Examples of

- (a) subRiemanniann [sR] geometries which
- (b) fiber 'metrically' over the plane and(c) whose sR geod flow is integrable.

space	common name	authors
$\overline{J^k = J^k(\mathbb{R}, \mathbb{R})}$	Jet space	Felipe Perez-Monroy
$\mathbb{R}^2 imes \mathbb{S}^1$	'roto-translation group'	Citti, Scott Pauls
"	bicycling space	Ardentov, Bor, Sachkov, LeDonne, M-
$\mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1$	tricycling space	Perline-Tabachnikov (3 wks ago!!)
$\mathbb{R}^2 \times SO(3)$	rolling ball on plate	Jurdjevic
$\mathbb{R}^2 \times SL(2,\mathbb{R})$	rolling hyperb. plane on euc plane	"

and a candidate family

space	common name	authors
$\overline{M^k} = \mathbb{R}^2 \times \mathbb{T}^k$	Monster Tower	M- , Zhitomirskii
"	or k-trailer space	Murray-Sastry; Jean,
"	or Semple Tower	Semple, Demailly, Colley-Kennedy
"	or k-fold Cartan prolongation	Cartan (E), Bryant

where $\mathbb{T}^k = \mathbb{S}^1 \times \ldots \times \mathbb{S}^1$ is the k-torus

Common properties.

- a) Subriemannian (bracket generating!) of Rank 2.
- b) Admit a sR submersion onto the Euclidean plane
- c) have integrable sR geodesic flows

Problem 1: Classify the sR geometries having properties (a), (b) and (c).

Problem 2: Classify the Carnot groups having properties (a), (b) and (c).

Remark: (b) is implied by 'Carnot' so is unneccessary

Problem 3. If a sR geometry is integrable then do all of its nilpotentizations (which are Carnot groups) also have integrable geodesic flows?

Heis geodesics ...

c c e

Those	Corr	zsp.	10 () s
fail	40	min	imize	after
one	tu	5N.		•

then to

Problem 4: For a given such geometry, classify the metric lines within that geometry.

solved for the bicycling space $\mathbb{R}^2 \times \mathbb{S}^1 = \mathbb{S}T\mathbb{R}^2$ (the 2nd entry in the table at the beginning of the talk) in Ardentov-Bor-LeDonne-M–Sachkov.

Thm: only the (lifts of lines) AND the "Euler soliton" are metric lines

Draw a picture , Richard? Why not?

 J^2 = the Carnot group called 'Engel group" and is the Nilpotentization of the bicycling space (at any point) "so" admits elastica as projected geodesics. and 'thus" (cf Problem 3 above) this bicycling sol'n " \implies " J^2 classification: lines + Euler solitons. (**Proof due to Ardentov-Sachkov**): again:

Bravo-Doddoli **ALMOST** fully solved Problem 4 for all of the jet spaces J^k , k = 1, 2, ... (the first entry of the table at the beginning of the talk) 2023 UCSC thesis. Alejandro Bravo Doddoli is now at U of Mich, Ann Arbor.

Thm [Doddoli] Besides the lifts of Euc. lines and of the Euler soliton, there are, for each odd k, new metric lines which arise, and are a kind of hyperelliptic analogue of the Euler's soliton. Their planar projections are constructed from certain heteroclinic connections in degree one Hamiltonian systems of the form $\frac{1}{2}p^2 + \frac{1}{2}F(x)^2$ where F(x) has degree k.

All geodesics for J^k are given in terms of solutions to a hyperelliptic ODE , the one induced by the H above.

the main thread...

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	aim	ing for the Monster	\square
spacecommon nameauthors $J^k = J^k(\mathbb{R}, \mathbb{R})$ Jet spaceFelipe Perez-Monroy $\mathbb{R}^2 \times \mathbb{S}^1$ 'roto-translation group'Citti, Scott Pauls"bicycling spaceArdentov, Bor, Sachkov, LeDonr. $\mathbb{R}^2 \times S^1 \times \mathbb{S}^1$ tricycling spacePerline-Tabachnikov (3 wks ag $\mathbb{R}^2 \times SO(3)$ rolling ball on plateJurdjevic $\mathbb{R}^2 \times SL(2, \mathbb{R})$ rolling hyperb. plane on euc plane" $\mathcal{M}^k = \mathbb{R}^2 \times \mathbb{T}^k$ Monster TowerM-, Zhitomirskii"or k-trailer spaceMurray-Sastry; Jean,"or Semple TowerSemple, Demailly, Colley-Kenned	U			
$J^{k} = J^{k}(\mathbb{R}, \mathbb{R})$ Jet space Felipe Perez-Monroy $\mathbb{R}^{2} \times \mathbb{S}^{1}$ 'roto-translation group' Citti, Scott Pauls $\mathbb{R}^{2} \times \mathbb{S}^{1} \times \mathbb{S}^{1}$ tricycling space Perline-Tabachnikov (3 wks ag $\mathbb{R}^{2} \times SO(3)$ rolling ball on plate Jurdjevic $\mathbb{R}^{2} \times SL(2, \mathbb{R})$ rolling hyperb. plane on euc plane " $\frac{conjectwed}{M^{k}} = \mathbb{R}^{2} \times \mathbb{T}^{k}$ Monster Tower M-, Zhitomirskii " or k-trailer space Murray-Sastry; Jean, " or Semple Tower Semple, Demailly, Colley-Kenned		space	common name	authors
$\mathbb{R}^{2} \times \mathbb{S}^{1}$ 'roto-translation group' Citti, Scott Pauls $\mathbb{R}^{2} \times \mathbb{S}^{1} \times \mathbb{S}^{1}$ bicycling space Ardentov, Bor, Sachkov, LeDonn $\mathbb{R}^{2} \times SO(3)$ rolling ball on plate Jurdjevic $\mathbb{R}^{2} \times SL(2, \mathbb{R})$ rolling hyperb. plane on euc plane " $\frac{conjectured}{M^{k}} = \mathbb{R}^{2} \times \mathbb{T}^{k}$ Monster Tower M-, Zhitomirskii " or k-trailer space Murray-Sastry; Jean, " or Semple Tower Semple, Demailly, Colley-Kenned		$J^{\kappa} = J^{\kappa}(\mathbb{R}, \mathbb{R})$	\mathbb{R}) Jet space	Felipe Perez-Monroy
"bicycling space tricycling spaceArdentov, Bor, Sachkov, LeDon Perline-Tabachnikov (3 wks ag Jurdjevic $\mathbb{R}^2 \times SO(3)$ $\mathbb{R}^2 \times SL(2, \mathbb{R})$ rolling ball on plate plane on euc planeJurdjevic " <i>conjecturediteg alls</i> : space"spacecommon name or k-trailer space or Semple TowerM-, Zhitomirskii Murray-Sastry; Jean, Semple, Demailly, Colley-Kennee		$\mathbb{R}^2 \times \mathbb{S}^1$	'roto-translation group'	Citti, Scott Pauls
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		"	bicycling space	Ardentov, Bor, Sachkov, LeDonn
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\mathbb{R}^2 imes \mathbb{S}^1 imes \mathbb{S}^2$	\mathbb{S}^1 tricycling space	Perline-Tabachnikov (3 wks ag
$\frac{\mathbb{R}^2 \times SL(2,\mathbb{R}) \text{ rolling hyperb. plane on euc plane}}{}_{n}^{m}$ $\frac{\text{conjectused integrable:}}{\text{space common name authors}}$ $\overline{M^k = \mathbb{R}^2 \times \mathbb{T}^k \text{ Monster Tower M- , Zhitomirskii}}_{n}^{m} \text{ or k-trailer space Murray-Sastry; Jean,}}_{n}$	1	$\mathbb{R}^2 \times SO(3)$) rolling ball on plate	Jurdjevic
spacecommon name $M^k = \mathbb{R}^2 \times \mathbb{T}^k$ Monster Tower"Monster Tower"or k-trailer space"Murray-Sastry; Jean,"or Semple TowerSemple, Demailly, Colley-Kennee	<u> </u>	$\mathbb{R}^2 \times SL(2, \mathbb{R})$	$\hat{\mathbb{R}}$) rolling hyperb. plane on euc pla	ine "
spacecommon nameauthors $M^k = \mathbb{R}^2 \times \mathbb{T}^k$ Monster TowerM- , Zhitomirskii"or k-trailer spaceMurray-Sastry; Jean,"or Semple TowerSemple, Demailly, Colley-Kenned	1_	conjectu	ved integrable:	
$M^k = \mathbb{R}^2 \times \mathbb{T}^k$ Monster Tower M- , Zhitomirskii " " " " " " " " " " " " " " " " " "		space	common name	authors
"or k-trailer spaceMurray-Sastry; Jean,"or Semple TowerSemple, Demailly, Colley-Kennee	$\overline{M^k}$	$=\mathbb{R}^2 imes\mathbb{T}^k$	Monster Tower	M- , Zhitomirskii
" or Semple Tower Semple, Demailly, Colley-Kennee		"	or k-trailer space	Murray-Sastry; Jean,
		"	or Semple Tower	Semple, Demailly, Colley-Kenned
" or k-fold Cartan prolongation Cartan (E), Bryant		"	or k-fold Cartan prolongation	Cartan (E), Bryant

from ``Leuven" lecture notes, Gary Kennedy trailer truck

Figure 3: Truck and trailer. (is really the bicycle)

Figure 6: To move the trailer on a circle of radius r, drive the truck on a circle of radius $\sqrt{r^2 + 1}$.

Figure 7: Parallel parking. (from officialdrivingschool.com)

controls:

see E. Nelson,
 `Tensor Analysis'',
 for one of the best treatments

Figure 8: A train, made up of a truck pulling 5 trailers.

 (M_{h})

Put a sR metric on DCTM by insisting length of a path is the keugth of the path swept out by the frant wheel Equivalently $M_{\kappa} \longrightarrow \mathbb{R}^2$ K-trailer -> position of config. front wheel (front end of 157 line segment

is a sR submersion

Another way to get the k-trailer space with its distribution: (projectively) prolong the plane k times

-result ``Monster tower'', M- and Zhitomirskii

-``Semple tower'' the algebraic geometers: Semple, Lejeune, Demailly, Kennedy, Colley, ..

Prolongation:

``prolongation is just differentiating the equations you have and then adjoining those equations as new equations in the system."

-Robert Bryant

there are different ways to PROLONG.

Affine: for functions on the line, get the kth jet spaces J^k with its distribution and fibration structure $R \rightarrow J^k \rightarrow J^{k-1}$.

Projectively: for curves in the plane get the kth Monster Tower M_k with its rank 2 distribution and fibration structure $P_1 \rightarrow M_k \rightarrow M_{k-1}$

Curve interpretations graphs over IR < IR²: J^X iet K->00 in right way integrable PDE ?

and they are invariant under z-translations