Examples of

(a) subRiemanniann [sR] geometries which
(b) fiber 'metrically' over the plane and
(c) whose sR geod flow is integrable.

space	common name	authors
$J^{k}=J^{k}(\mathbb{R}, \mathbb{R})$	Jet space	Felipe Perez-Monroy
$\mathbb{R}^{2} \times \mathbb{S}^{1}$	'roto-translation group'	Citti, Scott Pauls
$" \#$	bicycling space	Ardentov, Bor, Sachkov, LeDonne, M-
$\mathbb{R}^{2} \times \mathbb{S}^{1} \times \mathbb{S}^{1}$	tricycling space	Perline-Tabachnikov (3 wks ago!!)
$\mathbb{R}^{2} \times S O(3)$	rolling ball on plate	Jurdjevic
$\mathbb{R}^{2} \times S L(2, \mathbb{R})$	rolling hyperb. plane on euc plane	"

and a candidate family

space	common name	authors
$M^{k}=\mathbb{R}^{2} \times \mathbb{T}^{k}$	Monster Tower	M- , Zhitomirskii
$"$	or k-trailer space	Murray-Sastry; Jean, ..
$"$	or Semple Tower	Semple, Demailly, Colley-Kennedy
$"$	or k-fold Cartan prolongation	Cartan (E), Bryant

where $\mathbb{T}^{k}=\mathbb{S}^{1} \times \ldots \times \mathbb{S}^{1}$ is the k-torus

Common properties.
a) Subriemannian (bracket generating!) of Rank 2.
b) Admit a sR submersion onto the Euclidean plane
c) have integrable sR geodesic flows

Problem 1: Classify the sR geometries having properties (a), (b) and (c).

Problem 2: Classify the Carnot groups having properties (a), (b) and (c).
Remark: (b) is implied by 'Carnot' so is unnneccessary

$$
\text { i.e. Problem } 2 \leq \text { Problem } 1
$$

Problem 3. If a sR geometry is integrable then do all of its nilpotentizations (which are Carnot groups) also have integrable geodesic flows?

Model problem. Heis group.

$$
Q=\mathbb{R}^{3}
$$

$D=s t d$ "rotil invaiant' coutact distribution

$$
=\left\{d z-\frac{1}{2}(x d y-y d x)=0\right\}
$$

Heis godesics...

Project to

Those corresp. to \odot s fail to minimize after one turn.

Only the horiz.lifts of s are grobally minimizing METRIC LINES.
\because Describe $三$
a) $s R$,
a) rank (2)
b) $s R$ submersion

6
c) the $S R$ Hemin S H
on \rightarrow board \leftarrow

Problem 4: For a given such geometry, classify the metric lines within that geometry.
solved for the bicycling space $\mathbb{R}^{2} \times \mathbb{S}^{1}=\mathbb{S} T \mathbb{R}^{2}$ (the 2nd entry in the table at the beginning of the talk) in Ardentov-Bor-LeDonne-MSachkov.

Thm: only the (lifts of lines) AND the "Euler soliton" are metric lines

Draw a picture, Richard? Why not?
$J^{2}=$ the Carnot group called 'Engel group" and is the Nilpotentization of the bicycling space (at any point) "so" admits elastica as projected geodesics. and "thus" (cf Problem 3 above) this bicycling sol'n " \Longrightarrow " J^{2} classification: lines + Euler solitons. (Proof due to Ardentov-Sachkov): again:

Bravo-Doddoli ALMOST fully solved Problem 4 for all of the jet spaces $J^{k}, k=1,2, \ldots$ (the first entry of the table at the beginning of the talk) 2023 UCSC thesis. Alejandro Bravo Doddoli is now at U of Mich, Ann Arbor.

Thm [Doddoli] Besides the lifts of Euc. lines and of the Euler soliton, there are, for each odd k, new metric lines which arise, and are a kind of hyperelliptic analogue of the Euler's soliton. Their planar projections are constructed from certain heteroclinic connections in degree one Hamiltonian systems of the form $\frac{1}{2} p^{2}+\frac{1}{2} F(x)^{2}$ where $F(x)$ has degree k.

All geodesics for J^{k} are given in terms of solutions to a hyperelliptic ODE , the one induced by the H above.

fre the Monster		
space	common name	authors
$\overline{J^{k}}=J^{k}(\mathbb{R}, \mathbb{R})$	Jet space	Felipe Perez-Monroy
$\rightarrow \mathbb{R}^{2} \times \mathbb{S}^{1}$	'roto-translation group' bicycling space	Citti, Scott Pauls
$\mathbb{R}^{2} \times \mathbb{S}^{1} \times \mathbb{S}^{1}$	tricycling space	Ardentov, Bor, Sachkov, LeDonn Perline-Tabachnikov (3 wks ag
) $\mathbb{R}^{2} \times S O(3)$	rolling ball on plate	Jurdjevic
) $\mathbb{R}^{2} \times S L(2, \mathbb{R})$	rolling hyperb. plane on euc plane	
conjectured integrable:		
space	common name	authors
$M^{k}=\mathbb{R}^{2} \times \mathbb{T}^{k}$	Monster Tower	M- , Zhitomirskii Murray-Sastry; Jean, ... Semple, Demailly, Colley-Kenne Cartan (E), Bryant
	or k-trailer space	
"	or Semple Tower Se	
$"$ or	-fold Cartan prolongation	

$$
\begin{aligned}
& 3 \\
& \text { no slip. } \\
& \frac{d}{d t} \text { (back wheel) } \in \text { line spanned } \\
& \text { by frame } \\
& K=1, \quad M_{2} \simeq \mathbb{P} T \mathbb{R}^{2} \simeq \mathbb{R}^{2} \times S^{1} \\
& \text { "bicycling" } \\
& K=2 \\
& \text { nonslip. } \\
& \text { Per line-Tab } \\
& \text { "tricycle" }
\end{aligned}
$$

truck ${ }^{\text {trailer }}$,
\qquad

general K : K trailers

from "Leaven" lecture notes, Gary Kennedy

Figure 3: Truck and trailer.

$$
\begin{aligned}
& \text { lis really the } \\
& \text { bicycle., }
\end{aligned}
$$

from "Leuven"

Figure 6: To move the trailer on a circle of radius r, drive the truck on a circle of radius $\sqrt{r^{2}+1}$.

Figure 7: Parallel parking. (from officialdrivingschool.com)
\rightarrow see E. Nelson,
"Tensor Analysis", controls:
"Steer \&
Drive" for one of the best treatments

Figure 8: A train, made up of a truck pulling 5 trailers. $\left(M_{5}\right)$

Put a sR metric on $D \subset T M_{K}$ by insisting length of a path is the length of the path swept out by the front orfeel equivalently

$$
\begin{aligned}
& M_{K} \longrightarrow \mathbb{R}^{2} \\
& \text { K-trailer } \longrightarrow \\
& \text { condition of } \\
& \text { front wi ed } \\
& \text { cfront end of } \\
& 151 \text { line segment l }
\end{aligned}
$$

is as R submersion

Another way to get the k-trailer space with its distribution: (projectively) prolong the plane k times
-result "Monster tower", M- and Zhitomirskii
-"Semple tower" the algebraic geometers: Semple, Lejeune, Demailly, Kennedy, Colley, ..

Prolongation:

"prolongation is just differentiating the equations you have and then adjoining those equations as new equations in the system."

-Robert Bryant

there are different ways to PROLONG.
Affine:for functions on the line, get the kth jet spaces $J \wedge k$ with its distribution and fibration structure $R->J \wedge k->J \wedge\{k-1\}$.

Projectively: for curves in the plane get the kth Monster Tower M_k with its rank 2 distribution and fibration structure
P_1-> M_k -> M_\{k-1\}

Curve interpretations
graphs over $\mathbb{R}<\mathbb{R}^{2}$: J^{k}
let $K \rightarrow \infty$ in right way integrable PDE?

Two-plane fields in 3-space: $\left\{d z-A_{1}(x, y) d x-A_{2}(x, y) d y=0\right\}$ `distribution’, D one-form, θ
(here: $A_{1} d x+A_{2} d y=y d x$)

D can be put in this form, provided: the two-planes don't go vertical: $\frac{\partial}{\partial z} \notin D(x, y, z)$
and they are invariant under z-translations

