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History of Kahan discretization. 1: Kahan

I W. Kahan. Unconventional numerical methods for
trajectory calculations (Unpublished lecture notes, 1993).

ẋ = Q(x) + Bx + c  (x̃ − x)/ε = Q(x , x̃) + B(x + x̃)/2 + c,

where B ∈ Rn×n, c ∈ Rn, each component of Q : Rn → Rn is a
quadratic form, and Q(x , x̃) = (Q(x + x̃)−Q(x)−Q(x̃))/2 is
the corresponding symmetric bilinear function. Thus,

ẋk  (x̃k − xk )/ε, x2
k  xk x̃k , xjxk  (xj x̃k + x̃jxk )/2.

Linear w.r.t. x̃ , therefore defines a rational map x̃ = Φf (x , ε).
Obvious symmetry: x ↔ x̃ , ε 7→ −ε, therefore Φf reversible:

Φ−1
f (x , ε) = Φf (x ,−ε).

In particular, Φf is birational, and deg Φf = deg Φ−1
f = n.

Yuri B. Suris Geometric constructions of integrable birational maps



History. 2: Hirota-Kimura

I R. Hirota, K. Kimura. Discretization of the Euler top.
J. Phys. Soc. Japan 69 (2000) 627–630,

I K. Kimura, R. Hirota. Discretization of the Lagrange top.
J. Phys. Soc. Japan 69 (2000) 3193–3199.

Renewed interest:

I T. Ratiu. Talk at the Oberwolfach Workshop “Geometric
Integration”, March 2006. Claims: HK-type discretizations
integrable for Clebsch system (true) and for Kovalevsky top
(wrong).
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History. 3: Team Berlin

I M. Petrera, A. Pfadler, Yu. S. On integrability of Hirota-
Kimura type discretizations. Experimental study of the
discrete Clebsch system. Exp. Math., 2009, 18, 223–247.

I M. Petrera, A. Pfadler, Yu. S. On integrability of Hirota-
Kimura type discretizations. RCD, 2011, 16, 245–289.

Integrability for (besides Euler top and Lagrange top):
• reduced Nahm equations,
• three-wave interaction system,
• periodic Volterra chain of period N = 3,4,
• dressing chain with N = 3,
• system of two interacting Euler tops,
• Kirchhof case of rigid body in an ideal fluid,
• Clebsch case of rigid body in an ideal fluid.
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History. 4: Team Norway-Australia-New Zealand

I E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel.
Geometric properties of Kahan’s method.
J. Phys. A, 2013, 46, 025201.

Theorem. Let f (x) = J∇H(x), with J ∈ so(n), Hamilton
function H : Rn → R of deg = 3. Then Φf (x , ε) admits a rational
integral:

H̃(x , ε) = H(x) +
ε

3
(∇H(x))T

(
I − ε

2
f ′(x)

)−1
f (x),

and an invariant volume form

dx1 ∧ . . . ∧ dxn

det
(

I − ε

2
f ′(x)

) .
Degree of denominator det(I − ε

2 f ′(x)) is n, degree of
numerator of H̃(x , ε) is n + 1.
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Example 1: Geometry of Kahan discretization of 2D
Hamiltonian systems

Let n = 2 and let H(x , y) be a polynomial with deg H = 3.

Consider f (x , y) = J∇H(x , y), with J =

(
0 1
−1 0

)
. According to

theorem by Celledoni et al., Φf is a birational planar map with
an invariant measure and an integral⇒ completely integrable.
Integral:

H̃(x , y , ε) =
C(x , y , ε)
D(x , y , ε)

,

where deg C = 3, deg D = 2. Level sets:

Eλ =
{

(x , y) : C(x , y , ε)− λD(x , y , ε) = 0
}
,

a pencil of cubic curves, characterized by its nine base points.
On each invariant curve, Φf induces a translation (respective to
the addition law on this curve).
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Complexification, projectivization

Pencil

Ēλ =
{

[x : y : z] ∈ CP2 : C̄(x , y , z, ε)− λzD̄(x , y , z, ε) = 0
}
.

spanned by two curves,

Ē0 =
{

[x : y : z] ∈ CP2 : C̄(x , y , z, ε) = 0
}
,

assumed nonsingular, and

Ē∞ =
{

[x : y : z] ∈ CP2 : zD̄(x , y , z, ε) = 0
}

reducible, consisting of conic {D̄(x , y , z, ε) = 0} and the line at
infinity {z = 0}. Three base points at infinity:

{F1,F2,F3} = Ē0 ∩ {z = 0},

and six (finite) base points {B1, . . . ,B6} = Ē0 ∩ {D̄ = 0}.
Yuri B. Suris Geometric constructions of integrable birational maps



Illustration

INTEGRABLE MAPS FROM SPHERICAL GEOMETRY

1. SPHERICAL TRIANGLES
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Observation2 INTEGRABLE MAPS FROM SPHERICAL GEOMETRY
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Main result

I M. Petrera, J. Smirin, Yu. S. Geometry of the Kahan
discretizations of planar quadratic Hamiltonian systems.
Proc. R. Soc. A 476 (2019) 20180761

Theorem. A pencil of elliptic curves consists of invariant curves
for Kahan’s discretization of a planar quadratic Hamiltonian
vector field iff the hexagon through the six finite base points has
three pairs of parallel sides which pass through the three base
points at infinity.
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Main tool: Manin involutions for cubic curves ...

Definition. Consider a nonsingular cubic curve Ē in CP2.
• For a point P0 ∈ Ē , the Manin involution IĒ,P0

: Ē → Ē is
defined as follows:
I For P 6= P0, the point P̄ = IĒ,P0

(P) is the unique third
intersection point of Ē with the line (P0P);

I For P = P0, the point P̄ = IĒ,P0
(P) is the unique second

intersection point of Ē with the tangent line to Ē at P = P0.

• For two distinct points P0,P1 ∈ Ē , the Manin transformation
MĒ,P0,P1

: Ē → Ē is defined as

MĒ,P0,P1
= IĒ,P1

◦ IĒ,P0
.

With a natural addition law on Ē :

IĒ,P0
(P) = −(P0 + P), MĒ,P0,P1

(P) = P + P0 − P1.

Yuri B. Suris Geometric constructions of integrable birational maps



... and for cubic pencils

Definition. Consider a pencil E = {Ēλ} of cubic curves in CP2

with at least one nonsingular member.
• Let B be a base point of the pencil. The Manin involution
IE,B : CP2 99K CP2 is a birational map defined as follows. For
any P ∈ CP2, not a base point of E, let Ēλ be the unique curve
of E through P. Set

IE,B(P) = IĒλ,B(P).

• Let B1,B2 be two distinct base points of the pencil. The
Manin transformation ME,B1,B2 : CP2 99K CP2 is a birational map
defined as

ME,B1,B2 = IE,B2 ◦ IE,B1 .
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Manin involutions for cubic pencils

p1

p2

p3

p4
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p7

p8

p9

p
Ip1(p)
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Direct statement. Proof.

One shows that Kahan map Φf is a Manin transformation in six
different ways:

Φf = IE,B1 ◦ IE,F1 = IE,F1 ◦ IE,B4

= IE,B5 ◦ IE,F2 = IE,F2 ◦ IE,B2

= IE,B3 ◦ IE,F3 = IE,F3 ◦ IE,B6 .

Thus (on any invariant curve of E):

F1 − B1 = B2 − F2 = F3 − B3 = B4 − F1 = F2 − B5 = B6 − F3,

and
F1 + F2 + F3 = O.

As a consequence, e.g.:

B1 + B2 = F1 + F2 = −F3 ⇒ B1 + B2 + F3 = O.

Thus, line (B1B2) passes through F3.
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Inverse statement. Proof.

Prescribe arbitrary nine coefficients of the side lines of the
hexagon (three slopes µ1, µ2, µ3 and six heights b1, . . . ,b6):

(B1B2) : y = µ3x + b1, (B4B5) : y = µ3x + b4,

(B2B3) : y = µ1x + b2, (B5B6) : y = µ1x + b5,

(B3B4) : y = µ2x + b3, (B6B1) : y = µ2x + b6.

This defines nine points B1, . . . ,B6 and F1,F2,F3, therefore the
pencil E of cubic curves with those nine base points. Set

Φ = IE,B1 ◦ IE,F1 = IE,F1 ◦ IE,B4

= IE,B5 ◦ IE,F2 = IE,F2 ◦ IE,B2

= IE,B3 ◦ IE,F3 = IE,F3 ◦ IE,B6 .

This is a birational map of CP2 of degree 2. Check that this is a
Kahan discretization of f = J∇H with deg H = 3.
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Inverse statement. Proof.

Explicit expression:

H(x , y) =

2µ12

b14µ23µ13

(
1
3 (µ3x − y)3 + 1

2 (b1 + b4)(µ3x − y)2 + b1b4(µ3x − y)
)

− 2µ23

b25µ12µ13

(
1
3 (µ1x − y)3 + 1

2 (b2 + b5)(µ1x − y)2 + b2b5(µ1x − y)
)

+
2µ13

b36µ12µ23

(
1
3 (µ2x − y)3 + 1

2 (b3 + b6)(µ2x − y)2 + b3b6(µ2x − y)
)
,

where bij = bi − bj , µij = µi − µj .

Geometry implies dynamics!

Yuri B. Suris Geometric constructions of integrable birational maps



Projective generalization

Pascal configuration: six points A1, A2, A3, C1, C2, C3 on a
conic C, and three intersection points on a line `:

B1 = (A2C3)∩(A3C2), B2 = (A3C1)∩(A1C3), B3 = (A1C2)∩(A2C1).

A1
A2 A3

C1
C2

C3

B1
B2

B3
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Construction

Consider the pencil E of cubic curves passing through the nine
points Ai , Ci , Bi . It contains a reducible cubic C ∪ `, as well as
two triples of lines,

(A1C2) ∪ (A2C3) ∪ (A3C1) and (A2C1) ∪ (A3C2) ∪ (A1C3).

Theorem [Yu. S.’ 2020]. The map

Φ = IE,A1 ◦ IE,B1 = IE,B1 ◦ IE,C1

= IE,A2 ◦ IE,B2 = IE,B2 ◦ IE,C2

= IE,A3 ◦ IE,B3 = IE,B3 ◦ IE,C3

is a birational map of degree 2 leaving each curve of the pencil
E invariant (thus with a rational integral of motion of deg = 3).
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An early example

I R. Penrose, C. Smith. A quadratic mapping with invariant
cubic curve. Math. Proc. Camb. Phyl. Soc. 89 (1981),
89–105:

Φ :

 x0
x1
x2

 7→
 x0(x0 + ax1 + a−1x2)

x1(x1 + ax2 + a−1x0)
x2(x2 + ax0 + a−1x1)


with

A1 = [0 : 1 : −a], C1 = [0 : a : −1], B1 = [0 : 1 : −1]

(and others cyclically). Upon a projective transformation
sending B1, B2, B3 to infinity, get a Kahan discretization of a
Hamiltonian vector field with H(x , y) = xy(1− x − y) with the
time step ε = (a− 1)/(a + 1).
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Example 2: (γ1, γ2, γ3)-family

A family of quadratic planar systems parametrized by
(γ1, γ2, γ3) ∈ R3:(

ẋ
ẏ

)
=

1

`γ1−1
1 `γ2−1

2 `γ3−1
3

J∇H,

where

J =

(
0 1
−1 0

)
, H(x , y) = (`1(x , y))γ1(`2(x , y))γ2(`3(x , y))γ3 ,

and `i(x , y) = aix + biy linear forms.
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Origin: reduced Nahm equations for symmetric
monopoles [N. Hitchin, N. Manton, M. Murray’ 1995]

• Tetrahedral symmetry, (γ1, γ2, γ3) = (1,1,1):{
ẋ = 2xy ,
ẏ = x2 − y2,

H1(x , y) = x
(
y2 − 1

3
x2).

• Octahedral symmetry, (γ1, γ2, γ3) = (1,1,2):{
ẋ = 2xy ,
ẏ = x2 − 2y2,

H2(x , y) = x2(y2 − 1
4

x2).
• Icosahedral symmetry, (γ1, γ2, γ3) = (1,2,3):{

ẋ = 2xy − 2x2,

ẏ = 2xy − y2,
H3(x , y) = x2y3(− 2

3
x +

1
2

y
)
.

In all three cases level curves Hi(x , y) = c are of genus g = 1.
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Discretization

Kahan-Hirota-Kimura discretizations are integrable [M. Petrera,
A. Pfadler, Yu. S.’ 2011]:{

ẋ = 2xy ,
ẏ = x2 − y2,

 

{
(x̃ − x)/ε = x̃y + xỹ ,
(ỹ − y)/ε = x̃x − ỹy ,

{
ẋ = 2xy ,
ẏ = x2 − 2y2,

 

{
(x̃ − x)/ε = x̃y + xỹ ,
(ỹ − y)/ε = x̃x − 2ỹy ,

{
ẋ = 2xy − 2x2,

ẏ = 2xy − y2,
 

{
(x̃ − x)/ε = (x̃y + xỹ)− 2x̃x ,
(ỹ − y)/ε = (x̃y + xỹ)− ỹy .

In all three cases, the map admits an invariant pencil of elliptic
curves, of degrees 3, 4, and 6, respectively.
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Break of homogeneity? (γ1, γ2, γ3) = (1,1,1): no
problem

According to theorem by Celledoni et al., for any H(x , y) with
deg H = 3 (also non-homogeneous), Kahan discretization of
the Hamiltonian system with H is integrable.
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Break of homogeneity? (γ1, γ2, γ3) = (1,1,2): no!

Consider (ẋ , ẏ)T = x−1J∇H with H(x , y) = x2(y2 − 1
4x2 − 1

2b),{
ẋ = 2xy ,
ẏ = b + x2 − 2y2.

One can show: Kahan discretization{
(x̃ − x)/ε = x̃y + xỹ ,
(ỹ − y)/ε = b + xx̃ − 2yỹ

is non-integrable! However, an adjusted Kahan discretization{
(x̃ − x)/ε = x̃y + xỹ ,
(ỹ − y)/ε = b + xx̃ − (2−ε2b)yỹ

is integrable!
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Break of homogeneity? (γ1, γ2, γ3) = (1,2,3): no!

Consider system

ẋ = 2xy − 2x2 + c,
ẏ = 2xy − y2.

It is of the form (ẋ , ẏ)T = (xy + c)−1J∇H with

H(x , y) = (xy + c)2
(
− 2

3
xy +

1
2

y2 +
1
3

c
)
.

One can show: Kahan discretization

(x̃ − x)/ε = (x̃y + xỹ)− 2xx̃ + c,
(ỹ − y)/ε = (x̃y + xỹ)− yỹ

is non-integrable! However, an adjusted Kahan discretization

(x̃ − x)/ε = (1+ε2c)(x̃y + xỹ)− (2−ε2c)xx̃ + c−ε2c(2+ε2c)yỹ ,
(ỹ − y)/ε = (x̃y + xỹ)− (1+ε2c)yỹ

is integrable again!
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How to find repairing adjustments?

General answer: only geometry knows! It reveals solutions,
when asked properly.

• M. Petrera, Yu. S., R. Zander.
How one can repair non-integrable Kahan discretizations.
J. Phys. A: Math. Theor., 2020, 53, 37LT01, 7 pp.

• M. Schmalian, Yu. S., Yu. Tumarkin.
How one can repair non-integrable Kahan discretizations. II.
A planar system with invariant curves of degree 6.
Math. Phys. Anal. Geom., 2021, 24:40,19 pp.
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Geometry of discretization for (γ1, γ2, γ3) = (1,1,2)

p1 p2p3 p4

p5

p6

p7

p8
p9

p10

Invariant pencil E = P(4; p1, . . . ,p8,p2
9,p

2
10) of quartic curves

with two double points, featuring three reducible quartics:
• red: two simple lines and one double line (p9p10),
• blue: conic (p1p4p5p8p9p10) and two lines (p2p6p10), (p3p7p9).
• four lines (p9p8p2), (p9p4p6), (p10p1p7), (p10p5p3).

Yuri B. Suris Geometric constructions of integrable birational maps



Involutions for quartic pencils with two double points

• M. Petrera, Yu. S., K. Wei, R. Zander.
Manin involutions for elliptic pencils and discrete integrable
systems. Math. Phys. Anal. Geom., 2021, 24:6, 26 pp.

Manin involutions for E = P(4; p1, . . . ,p8,p2
9,p

2
10):

I I(1)
k , k ∈ {9,10}: I(1)

k (p) is the third intersection point of
the quartic through p with the line (ppk ).

I I(2)
i,j , i , j ∈ {1, . . . ,8}: I(2)

i,j (p) is the sixth intersection point
of the quartic through p with the conic through p9, p10, pi ,
pj , p.
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Involutions for quartic pencils with two double points

p1 p2p3 p4

p5

p6

p7

p8

p9

p10 pI(1)
10 (p)

I(2)
1,5(p)
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Generalized geometry: projectively symmetric pencils

p1

p2

p3

p4

p5

p6

p7 p8

p9

p10

C

A

B

Geometry of base points of a projectively symmetric quartic
pencil with two double points E = P(4; p1, . . . ,p8,p2

9,p
2
10),

featuring two reducible curves:
• conic (p1 . . . p8) and double line (p9p10),
• four lines (p9p8p2), (p9p4p6), (p10p1p7), (p10p5p3).
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Quadratic Manin maps for projectively symmetric
quartic pencils

Theorem [M. Petrera, Yu. S., K. Wei, R. Zander’ 2021].

1. The projective involution σ can be represented as

σ = I(2)
1,8 = I(2)

2,7 = I(2)
3,6 = I(2)

4,5 .

2. The map

Φ = I(1)
9 ◦ σ = σ ◦ I(1)

10 = I(2)
i,k ◦ I(2)

j,k ,

(i , j) ∈ {(1,2), (2,3), (3,4), (5,6), (6,7), (7,8)} and
k ∈ {1, . . . ,8} distinct from i , j , is a birational map of
degree 2, leaving all curves of the pencil E invariant (i.e.,
with a rational integral of deg = 4).
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Example 3: Zhukovsky-Volterra gyrostat

ZV(β1, β2): 
ẋ1 = α1x2x3 − β2x3,

ẋ2 = α2x3x1 + β1x3,

ẋ3 = α3x1x2 + β2x1 − β1x2.

Integrable if
I either β2 = 0 (and αi arbitrary),
I or α1 + α2 + α3 = 0,

with integrals of motion

H3(x) = α1x2
2 − α2x2

1 − 2(β1x1 + β2x2),

H2(x) = α3x2
1 − α1x2

3 − 2(β1x1 + β2x2).
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Kahan discretization: integrable for β2 = 0 ...

dZV(β1, β2) [M. Petrera, A. Pfadler, Yu. S.’ 2011]:
x̃1 − x1 = εα1(x̃2x3 + x2x̃3)− εβ2(x̃3 + x3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1) + εβ1(x̃3 + x3),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2) + εβ2(x̃1 + x1)− εβ1(x̃2 + x2).

Integrable if β2 = 0, with two integrals

H2(x ; ε) =

α3x2
1 − α1x2

3 − 2β1x1 +
β2

1
α3

1− ε2α3α1x2
2

,

H3(x ; ε) =
α1x2

2 − α2x2
1 − 2β1x1 −

β2
1
α2

1− ε2α1α2x2
3

.
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... and non-integrable for β2 6= 0

Non-integrable if β2 6= 0 and α1 + α2 + α3 = 0, with only one
integral

H3(x ; ε) =
α1x2

2 − α2x2
1 − 2(β1x1 + β2x2) +

β2
2
α1
− β2

1
α2

1− ε2α1α2x2
3

.
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Integrable adjustment



x̃1 − x1 = εα1(x̃2x3 + x2x̃3)− εβ2(x̃3 + x3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1) + εβ1(x̃3 + x3),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2)− εβ2
α2 + α3

α1
(x̃1 + x1)− εβ1(x̃2 + x2)

−ε2β1(α2 + α3)(x1x̃3 − x̃1x3)− ε2β2α2(x2x̃3 − x̃2x3).

This map possesses (for arbitrary αi ) two integrals of motion,
H3(x ; ε) as above and

H2(x ; ε) =
α3x2

1 − α1x2
3 − 2(β1x1 + β2x2) +

β2
2
α1
− β2

1
α2

1− ε2α1α2x2
3

.

If α1 + α2 + α3 = 0, get integrable discretization of ZV(β1, β2).
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Generators of a separable pencil of quadrics

Consider a separable pencil of quadrics in P3:

Pµ = {X1X2 − µX3X4 = 0},

where Xj are four independent linear forms on C4. All Pµ pass
through the base set consisting of four lines

{X1 = X3 = 0}∪{X1 = X4 = 0}∪{X2 = X3 = 0}∪{X2 = X4 = 0}.

Two straight line generators of Pµ through [X1 : X2 : X3 : X4]:

`1(X ) =
{

[X1 : tX2 : tX3 : X4] : t ∈ P1
}
,

and
`2(X ) =

{
[tX1 : X2 : tX3 : X4] : t ∈ P1

}
.
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Involutions defined by a second pencil of quadrics

Let
Qλ = {Q0(x)− λQ∞(x) = 0}

be a second pencil of quadrics. Space P3 is foliated by elliptic
curves Eµλ = Pµ ∩Qλ. For any X ∈ P3 not from base sets of
both pencils, determine µ and λ such that X ∈ Eµλ. Set

i1(X ) = the second intersection point of `1(X ) with Qλ,
i2(X ) = the second intersection point of `2(X ) with Qλ.

Birational involutions on P3 of deg = 5 in general; under certain
geometric conditions, of deg = 3. Leave Pµ and Qλ invariant.
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3D generalization of QRT maps

Definition.
• 3D generalization of a QRT map:

g = i2 ◦ i1.

• 3D generalization of a QRT root, for the case, when Pµ, Qλ
are invariant under a linear projective map σ on P3:

f = i2 ◦ σ = σ ◦ i1,

so that g = f ◦ f .

These birational maps have, by construction, integrals of motion

X1X2

X3X4
= µ and

Q0(x)

Q∞(x)
= λ.
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Discrete time Zhukovsky-Volterra gyrostat as 3D QRT

Theorem [J. Alonso, Yu. S., K. Wei’ 2022]. Set

X1 =
√
α1x2 −

√
α2x1 −

( β1√
α2

+
β2√
α1

)
x4,

X2 =
√
α1x2 +

√
α2x1 +

( β1√
α2
− β2√

α1

)
x4,

X3 = x4 − ε
√
α1α2x3,

X4 = x4 + ε
√
α1α2x3.

Further, set Qλ(x) = Q0(x)− λQ∞(x), where Q0(x) = X3X4,

Q∞(x) = α3x2
1 − α1x2

3 − 2(β1x1 + β2x2)x4 +

(
β2

2
α1
− β2

1
α2

)
x2

4 .

Then Pµ, Qλ are symmetric w.r.t. σ : x3 → −x3, and the 3D
QRT root f = σ ◦ i1 = i2 ◦ σ is the adjusted Kahan discretization
of ZV(β1, β2).
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f = σ ◦ i1 f = i2 ◦ σ
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