Geometric constructions of integrable birational maps

Yuri B. Suris

(Technische Universität Berlin)

FDIS 2023, Antwerpen 11.08.2023

Yuri B. Suris Geometric constructions of integrable birational maps

History of Kahan discretization. 1: Kahan

 W. Kahan. Unconventional numerical methods for trajectory calculations (Unpublished lecture notes, 1993).

$$\dot{x} = Q(x) + Bx + c \quad \rightsquigarrow \quad (\widetilde{x} - x)/\epsilon = Q(x, \widetilde{x}) + B(x + \widetilde{x})/2 + c,$$

where $B \in \mathbb{R}^{n \times n}$, $c \in \mathbb{R}^{n}$, each component of $Q : \mathbb{R}^{n} \to \mathbb{R}^{n}$ is a *quadratic* form, and $Q(x, \tilde{x}) = (Q(x + \tilde{x}) - Q(x) - Q(\tilde{x}))/2$ is the corresponding symmetric *bilinear* function. Thus,

$$\dot{x}_k \rightsquigarrow (\widetilde{x}_k - x_k)/\epsilon, \quad x_k^2 \rightsquigarrow x_k \widetilde{x}_k, \quad x_j x_k \rightsquigarrow (x_j \widetilde{x}_k + \widetilde{x}_j x_k)/2.$$

Linear w.r.t. \tilde{x} , therefore defines a *rational* map $\tilde{x} = \Phi_f(x, \epsilon)$. Obvious symmetry: $x \leftrightarrow \tilde{x}$, $\epsilon \mapsto -\epsilon$, therefore Φ_f *reversible*:

$$\Phi_f^{-1}(x,\epsilon) = \Phi_f(x,-\epsilon).$$

In particular, Φ_f is *birational*, and deg $\Phi_f = \deg \Phi_f^{-1} = n$.

- R. Hirota, K. Kimura. Discretization of the Euler top. J. Phys. Soc. Japan 69 (2000) 627–630,
- K. Kimura, R. Hirota. Discretization of the Lagrange top. J. Phys. Soc. Japan 69 (2000) 3193–3199.

Renewed interest:

 T. Ratiu. Talk at the Oberwolfach Workshop "Geometric Integration", March 2006. Claims: HK-type discretizations integrable for *Clebsch system* (true) and for *Kovalevsky top* (wrong).

History. 3: Team Berlin

- M. Petrera, A. Pfadler, Yu. S. On integrability of Hirota-Kimura type discretizations. Experimental study of the discrete Clebsch system. Exp. Math., 2009, 18, 223–247.
- M. Petrera, A. Pfadler, Yu. S. On integrability of Hirota-Kimura type discretizations. RCD, 2011, 16, 245–289.

Integrability for (besides Euler top and Lagrange top):

- reduced Nahm equations,
- three-wave interaction system,
- periodic Volterra chain of period N = 3, 4,
- dressing chain with N = 3,
- system of two interacting Euler tops,
- Kirchhof case of rigid body in an ideal fluid,
- Clebsch case of rigid body in an ideal fluid.

History. 4: Team Norway-Australia-New Zealand

 E. Celledoni, R.I. McLachlan, B. Owren, G.R.W. Quispel. Geometric properties of Kahan's method.
 J. Phys. A, 2013, 46, 025201.

Theorem. Let $f(x) = J\nabla H(x)$, with $J \in so(n)$, Hamilton function $H : \mathbb{R}^n \to \mathbb{R}$ of deg = 3. Then $\Phi_f(x, \epsilon)$ admits a rational integral:

$$\widetilde{H}(x,\epsilon) = H(x) + \frac{\epsilon}{3} (\nabla H(x))^{\mathrm{T}} \left(I - \frac{\epsilon}{2} f'(x)\right)^{-1} f(x),$$

and an invariant volume form

$$\frac{dx_1 \wedge \ldots \wedge dx_n}{\det\left(I - \frac{\epsilon}{2}f'(x)\right)}$$

Degree of denominator $det(I - \frac{\epsilon}{2}f'(x))$ is *n*, degree of numerator of $\widetilde{H}(x,\epsilon)$ is n + 1.

Example 1: Geometry of Kahan discretization of 2D Hamiltonian systems

Let n = 2 and let H(x, y) be a polynomial with deg H = 3. Consider $f(x, y) = J\nabla H(x, y)$, with $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. According to theorem by Celledoni et al., Φ_f is a birational planar map with an invariant measure and an integral \Rightarrow completely integrable. Integral:

$$\widetilde{\mathcal{H}}(x,y,\epsilon) = rac{\mathcal{C}(x,y,\epsilon)}{\mathcal{D}(x,y,\epsilon)},$$

where deg C = 3, deg D = 2. Level sets:

$$\mathcal{E}_{\lambda} = \big\{ (x, y) : \mathcal{C}(x, y, \epsilon) - \lambda \mathcal{D}(x, y, \epsilon) = \mathbf{0} \big\},\$$

a *pencil of cubic curves*, characterized by its nine *base points*. On each invariant curve, Φ_f induces a translation (respective to the addition law on this curve).

Complexification, projectivization

Pencil

$$\bar{\mathcal{E}}_{\lambda} = \left\{ [x: y: z] \in \mathbb{CP}^2 : \bar{C}(x, y, z, \epsilon) - \lambda z \bar{D}(x, y, z, \epsilon) = 0 \right\}.$$

spanned by two curves,

$$ar{\mathcal{E}}_0 = \left\{ [x:y:z] \in \mathbb{CP}^2 : \ ar{C}(x,y,z,\epsilon) = \mathbf{0}
ight\},$$

assumed nonsingular, and

$$ar{\mathcal{E}}_{\infty} = \left\{ [x:y:z] \in \mathbb{CP}^2 \, : \, z ar{D}(x,y,z,\epsilon) = \mathbf{0}
ight\}$$

reducible, consisting of conic $\{\overline{D}(x, y, z, \epsilon) = 0\}$ and the line at infinity $\{z = 0\}$. Three base points at infinity:

$$\{F_1, F_2, F_3\} = \bar{\mathcal{E}}_0 \cap \{z = 0\},\$$

and six (finite) base points $\{B_1, \ldots, B_6\} = \overline{\mathcal{E}}_0 \cap \{\overline{D} = 0\}.$

Yuri B. Suris Geometric constructions of integrable birational maps

Observation

 M. Petrera, J. Smirin, Yu. S. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Proc. R. Soc. A 476 (2019) 20180761

Theorem. A pencil of elliptic curves consists of invariant curves for Kahan's discretization of a planar quadratic Hamiltonian vector field iff the hexagon through the six finite base points has three pairs of parallel sides which pass through the three base points at infinity.

Main tool: Manin involutions for cubic curves ...

Definition. Consider a nonsingular cubic curve $\overline{\mathcal{E}}$ in \mathbb{CP}^2 .

• For a point $P_0 \in \overline{\mathcal{E}}$, the *Manin involution* $I_{\overline{\mathcal{E}},P_0} : \overline{\mathcal{E}} \to \overline{\mathcal{E}}$ is defined as follows:

- For P ≠ P₀, the point P

 = I_{E,P0}(P) is the unique third intersection point of E

 with the line (P₀P);
- For P = P₀, the point P
 = I_{E,P0}(P) is the unique second intersection point of E
 with the tangent line to E
 at P = P₀.
- For two distinct points $P_0, P_1 \in \overline{\mathcal{E}}$, the Manin transformation $M_{\overline{\mathcal{E}}, P_0, P_1} : \overline{\mathcal{E}} \to \overline{\mathcal{E}}$ is defined as

$$M_{\bar{\mathcal{E}},P_0,P_1}=I_{\bar{\mathcal{E}},P_1}\circ I_{\bar{\mathcal{E}},P_0}.$$

With a natural addition law on $\bar{\mathcal{E}}$:

$$I_{\bar{\mathcal{E}},P_0}(P) = -(P_0 + P), \quad M_{\bar{\mathcal{E}},P_0,P_1}(P) = P + P_0 - P_1.$$

Definition. Consider a pencil $\mathfrak{E} = \{\overline{\mathcal{E}}_{\lambda}\}$ of cubic curves in \mathbb{CP}^2 with at least one nonsingular member.

• Let *B* be a base point of the pencil. The *Manin involution* $I_{\mathfrak{E},B} : \mathbb{CP}^2 \dashrightarrow \mathbb{CP}^2$ is a birational map defined as follows. For any $P \in \mathbb{CP}^2$, not a base point of \mathfrak{E} , let $\overline{\mathcal{E}}_{\lambda}$ be the unique curve of \mathfrak{E} through *P*. Set

$$I_{\mathfrak{E},B}(P) = I_{\overline{\mathcal{E}}_{\lambda},B}(P).$$

• Let B_1, B_2 be two distinct base points of the pencil. The *Manin transformation* $M_{\mathfrak{E},B_1,B_2} : \mathbb{CP}^2 \dashrightarrow \mathbb{CP}^2$ is a birational map defined as

$$M_{\mathfrak{E},B_1,B_2}=I_{\mathfrak{E},B_2}\circ I_{\mathfrak{E},B_1}.$$

Manin involutions for cubic pencils

Direct statement. Proof.

One shows that Kahan map Φ_f is a Manin transformation in six different ways:

$$\Phi_{f} = I_{\mathfrak{E},B_{1}} \circ I_{\mathfrak{E},F_{1}} = I_{\mathfrak{E},F_{1}} \circ I_{\mathfrak{E},B_{4}}$$

$$= I_{\mathfrak{E},B_{5}} \circ I_{\mathfrak{E},F_{2}} = I_{\mathfrak{E},F_{2}} \circ I_{\mathfrak{E},B_{2}}$$

$$= I_{\mathfrak{E},B_{3}} \circ I_{\mathfrak{E},F_{3}} = I_{\mathfrak{E},F_{3}} \circ I_{\mathfrak{E},B_{6}}.$$

Thus (on any invariant curve of \mathfrak{E}):

$$F_1 - B_1 = B_2 - F_2 = F_3 - B_3 = B_4 - F_1 = F_2 - B_5 = B_6 - F_3$$
,
and

$$F_1+F_2+F_3=O.$$

As a consequence, e.g.:

$$B_1+B_2=F_1+F_2=-F_3 \quad \Rightarrow \quad B_1+B_2+F_3=O.$$

Thus, line (B_1B_2) passes through F_3 .

Inverse statement. Proof.

Prescribe arbitrary nine coefficients of the side lines of the hexagon (three slopes μ_1 , μ_2 , μ_3 and six heights b_1, \ldots, b_6):

This defines nine points B_1, \ldots, B_6 and F_1, F_2, F_3 , therefore the pencil \mathfrak{E} of cubic curves with those nine base points. Set

$$\Phi = I_{\mathfrak{E},B_1} \circ I_{\mathfrak{E},F_1} = I_{\mathfrak{E},F_1} \circ I_{\mathfrak{E},B_4}$$
$$= I_{\mathfrak{E},B_5} \circ I_{\mathfrak{E},F_2} = I_{\mathfrak{E},F_2} \circ I_{\mathfrak{E},B_2}$$
$$= I_{\mathfrak{E},B_3} \circ I_{\mathfrak{E},F_3} = I_{\mathfrak{E},F_3} \circ I_{\mathfrak{E},B_6}.$$

This is a birational map of \mathbb{CP}^2 of degree 2. Check that this is a Kahan discretization of $f = J\nabla H$ with deg H = 3.

Explicit expression:

$$\begin{split} & \mathcal{H}(x,y) = \\ & \frac{2\mu_{12}}{b_{14}\mu_{23}\mu_{13}} \Big(\frac{1}{3}(\mu_3 x - y)^3 + \frac{1}{2}(b_1 + b_4)(\mu_3 x - y)^2 + b_1b_4(\mu_3 x - y) \Big) \\ & - \frac{2\mu_{23}}{b_{25}\mu_{12}\mu_{13}} \Big(\frac{1}{3}(\mu_1 x - y)^3 + \frac{1}{2}(b_2 + b_5)(\mu_1 x - y)^2 + b_2b_5(\mu_1 x - y) \Big) \\ & + \frac{2\mu_{13}}{b_{36}\mu_{12}\mu_{23}} \Big(\frac{1}{3}(\mu_2 x - y)^3 + \frac{1}{2}(b_3 + b_6)(\mu_2 x - y)^2 + b_3b_6(\mu_2 x - y) \Big), \end{split}$$

where $b_{ij} = b_i - b_j$, $\mu_{ij} = \mu_i - \mu_j$.

Geometry implies dynamics!

Pascal configuration: six points A_1 , A_2 , A_3 , C_1 , C_2 , C_3 on a conic C, and three intersection points on a line ℓ :

 $B_1 = (A_2C_3) \cap (A_3C_2), \quad B_2 = (A_3C_1) \cap (A_1C_3), \quad B_3 = (A_1C_2) \cap (A_2C_1).$

Consider the pencil \mathfrak{E} of cubic curves passing through the nine points A_i , C_i , B_i . It contains a reducible cubic $\mathcal{C} \cup \ell$, as well as two triples of lines,

 $(A_1C_2) \cup (A_2C_3) \cup (A_3C_1)$ and $(A_2C_1) \cup (A_3C_2) \cup (A_1C_3)$.

Theorem [Yu. S.' 2020]. The map

$$\Phi = I_{\mathfrak{E},A_1} \circ I_{\mathfrak{E},B_1} = I_{\mathfrak{E},B_1} \circ I_{\mathfrak{E},C_1}$$
$$= I_{\mathfrak{E},A_2} \circ I_{\mathfrak{E},B_2} = I_{\mathfrak{E},B_2} \circ I_{\mathfrak{E},C_2}$$
$$= I_{\mathfrak{E},A_3} \circ I_{\mathfrak{E},B_3} = I_{\mathfrak{E},B_3} \circ I_{\mathfrak{E},C_3}$$

is a birational map of degree 2 leaving each curve of the pencil \mathfrak{E} invariant (thus with a rational integral of motion of deg = 3).

An early example

 R. Penrose, C. Smith. A quadratic mapping with invariant cubic curve. Math. Proc. Camb. Phyl. Soc. 89 (1981), 89–105:

$$\Phi: \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_0(x_0 + ax_1 + a^{-1}x_2) \\ x_1(x_1 + ax_2 + a^{-1}x_0) \\ x_2(x_2 + ax_0 + a^{-1}x_1) \end{bmatrix}$$

with

$$A_1 = [0:1:-a], \quad C_1 = [0:a:-1], \quad B_1 = [0:1:-1]$$

(and others cyclically). Upon a projective transformation sending B_1 , B_2 , B_3 to infinity, get a Kahan discretization of a Hamiltonian vector field with H(x, y) = xy(1 - x - y) with the time step $\epsilon = (a - 1)/(a + 1)$.

A family of quadratic planar systems parametrized by $(\gamma_1, \gamma_2, \gamma_3) \in \mathbb{R}^3$:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \frac{1}{\ell_1^{\gamma_1 - 1} \ell_2^{\gamma_2 - 1} \ell_3^{\gamma_3 - 1}} J \nabla H,$$

where

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad H(x, y) = (\ell_1(x, y))^{\gamma_1} (\ell_2(x, y))^{\gamma_2} (\ell_3(x, y))^{\gamma_3},$$

and $\ell_i(x, y) = a_i x + b_i y$ linear forms.

Origin: reduced Nahm equations for symmetric monopoles [N. Hitchin, N. Manton, M. Murray' 1995]

• Tetrahedral symmetry, $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 1)$:

$$\begin{cases} \dot{x} = 2xy, \\ \dot{y} = x^2 - y^2, \end{cases} \quad H_1(x, y) = x(y^2 - \frac{1}{3}x^2).$$

• Octahedral symmetry, $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 2)$:

$$\begin{cases} \dot{x} = 2xy, \\ \dot{y} = x^2 - 2y^2, \end{cases} \quad H_2(x, y) = x^2 (y^2 - \frac{1}{4}x^2).$$

• Icosahedral symmetry, $(\gamma_1, \gamma_2, \gamma_3) = (1, 2, 3)$:

$$\begin{cases} \dot{x} = 2xy - 2x^2, \\ \dot{y} = 2xy - y^2, \end{cases} \qquad H_3(x, y) = x^2 y^3 \big(-\frac{2}{3}x + \frac{1}{2}y \big).$$

In all three cases level curves $H_i(x, y) = c$ are of genus g = 1.

Discretization

Kahan-Hirota-Kimura discretizations are integrable [M. Petrera, A. Pfadler, Yu. S.' 2011]:

$$\left\{ \begin{array}{ll} \dot{x}=2xy,\\ \dot{y}=x^2-y^2, \end{array} \right. \qquad \stackrel{\sim}{\longrightarrow} \quad \left\{ \begin{array}{ll} (\widetilde{x}-x)/\epsilon=\widetilde{x}y+x\widetilde{y},\\ (\widetilde{y}-y)/\epsilon=\widetilde{x}x-\widetilde{y}y, \end{array} \right.$$

$$\left\{ \begin{array}{ll} \dot{x}=2xy,\\ \dot{y}=x^2-2y^2, \end{array} \right. \xrightarrow{\sim} \left\{ \begin{array}{ll} (\widetilde{x}-x)/\epsilon=\widetilde{x}y+x\widetilde{y},\\ (\widetilde{y}-y)/\epsilon=\widetilde{x}x-2\widetilde{y}y, \end{array} \right.$$

$$\left\{ \begin{array}{ll} \dot{x}=2xy-2x^2, \\ \dot{y}=2xy-y^2, \end{array} \right. \longrightarrow \left\{ \begin{array}{ll} (\widetilde{x}-x)/\epsilon=(\widetilde{x}y+x\widetilde{y})-2\widetilde{x}x, \\ (\widetilde{y}-y)/\epsilon=(\widetilde{x}y+x\widetilde{y})-\widetilde{y}y. \end{array} \right.$$

In all three cases, the map admits an invariant pencil of elliptic curves, of degrees 3, 4, and 6, respectively.

Break of homogeneity? $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 1)$: no problem

According to theorem by Celledoni et al., for any H(x, y) with deg H = 3 (also non-homogeneous), Kahan discretization of the Hamiltonian system with H is integrable.

Break of homogeneity? $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 2)$: no!

Consider $(\dot{x}, \dot{y})^{\mathrm{T}} = x^{-1} J \nabla H$ with $H(x, y) = x^{2} (y^{2} - \frac{1}{4}x^{2} - \frac{1}{2}b)$,

$$\begin{cases} \dot{x} = 2xy, \\ \dot{y} = b + x^2 - 2y^2 \end{cases}$$

One can show: Kahan discretization

$$\begin{cases} (\widetilde{x} - x)/\epsilon = \widetilde{x}y + x\widetilde{y}, \\ (\widetilde{y} - y)/\epsilon = b + x\widetilde{x} - 2y\widetilde{y} \end{cases}$$

is non-integrable! However, an adjusted Kahan discretization

$$\begin{cases} (\widetilde{x} - x)/\epsilon = \widetilde{x}y + x\widetilde{y}, \\ (\widetilde{y} - y)/\epsilon = b + x\widetilde{x} - (2 - \epsilon^2 b)y\widetilde{y} \end{cases}$$

is integrable!

Break of homogeneity? $(\gamma_1, \gamma_2, \gamma_3) = (1, 2, 3)$: no!

Consider system

$$\dot{x} = 2xy - 2x^2 + c,$$

$$\dot{y} = 2xy - y^2.$$

It is of the form $(\dot{x}, \dot{y})^{\mathrm{T}} = (xy + c)^{-1} J \nabla H$ with

$$H(x,y) = (xy+c)^2 \Big(-\frac{2}{3}xy + \frac{1}{2}y^2 + \frac{1}{3}c \Big).$$

One can show: Kahan discretization

$$(\widetilde{x} - x)/\epsilon = (\widetilde{x}y + x\widetilde{y}) - 2x\widetilde{x} + c,$$

 $(\widetilde{y} - y)/\epsilon = (\widetilde{x}y + x\widetilde{y}) - y\widetilde{y}$

is non-integrable! However, an adjusted Kahan discretization

$$\begin{aligned} &(\widetilde{x}-x)/\epsilon = (1+\epsilon^2 c)(\widetilde{x}y+x\widetilde{y}) - (2-\epsilon^2 c)x\widetilde{x} + c - \epsilon^2 c(2+\epsilon^2 c)y\widetilde{y},\\ &(\widetilde{y}-y)/\epsilon = (\widetilde{x}y+x\widetilde{y}) - (1+\epsilon^2 c)y\widetilde{y} \end{aligned}$$

is integrable again!

General answer: **only geometry knows**! It reveals solutions, when asked properly.

- M. Petrera, Yu. S., R. Zander. How one can repair non-integrable Kahan discretizations.
- J. Phys. A: Math. Theor., 2020, 53, 37LT01, 7 pp.

• M. Schmalian, Yu. S., Yu. Tumarkin. How one can repair non-integrable Kahan discretizations. II. A planar system with invariant curves of degree 6. Math. Phys. Anal. Geom., 2021, **24**:40,19 pp.

Geometry of discretization for $(\gamma_1, \gamma_2, \gamma_3) = (1, 1, 2)$

Invariant pencil $\mathfrak{E} = \mathcal{P}(4; p_1, \dots, p_8, p_9^2, p_{10}^2)$ of quartic curves with two double points, featuring three reducible quartics:

- red: two simple lines and one double line (p_9p_{10}) ,
- blue: conic $(p_1p_4p_5p_8p_9p_{10})$ and two lines $(p_2p_6p_{10}), (p_3p_7p_9)$.
- four lines $(p_9p_8p_2)$, $(p_9p_4p_6)$, $(p_{10}p_1p_7)$, $(p_{10}p_5p_3)$.

• M. Petrera, Yu. S., K. Wei, R. Zander. *Manin involutions for elliptic pencils and discrete integrable systems.* Math. Phys. Anal. Geom., 2021, **24**:6, 26 pp.

Manin involutions for $\mathfrak{E} = \mathcal{P}(4; p_1, \dots, p_8, p_9^2, p_{10}^2)$:

- ► $I_k^{(1)}$, $k \in \{9, 10\}$: $I_k^{(1)}(p)$ is the third intersection point of the quartic through *p* with the line (pp_k) .
- ► $I_{i,j}^{(2)}$, $i, j \in \{1, ..., 8\}$: $I_{i,j}^{(2)}(p)$ is the sixth intersection point of the quartic through p with the conic through p_9 , p_{10} , p_i , p_j , p.

Involutions for quartic pencils with two double points

Generalized geometry: projectively symmetric pencils

Geometry of base points of a *projectively symmetric quartic* pencil with two double points $\mathfrak{E} = \mathcal{P}(4; p_1, \dots, p_8, p_9^2, p_{10}^2)$, featuring two reducible curves:

- conic $(p_1 \dots p_8)$ and double line $(p_9 p_{10})$,
- four lines $(p_9p_8p_2)$, $(p_9p_4p_6)$, $(p_{10}p_1p_7)$, $(p_{10}p_5p_3)$.

Quadratic Manin maps for projectively symmetric quartic pencils

Theorem [M. Petrera, Yu. S., K. Wei, R. Zander' 2021].

1. The projective involution σ can be represented as

$$\sigma = I_{1,8}^{(2)} = I_{2,7}^{(2)} = I_{3,6}^{(2)} = I_{4,5}^{(2)}.$$

2. The map

$$\Phi = I_9^{(1)} \circ \sigma = \sigma \circ I_{10}^{(1)} = I_{i,k}^{(2)} \circ I_{j,k}^{(2)},$$

 $(i, j) \in \{(1, 2), (2, 3), (3, 4), (5, 6), (6, 7), (7, 8)\}$ and $k \in \{1, ..., 8\}$ distinct from *i*, *j*, *i*s a birational map **of degree 2**, leaving all curves of the pencil \mathfrak{E} invariant (i.e., with a rational integral of deg = 4).

Example 3: Zhukovsky-Volterra gyrostat

$$ZV(\beta_1, \beta_2): \begin{cases} \dot{x}_1 = \alpha_1 x_2 x_3 - \beta_2 x_3, \\ \dot{x}_2 = \alpha_2 x_3 x_1 + \beta_1 x_3, \\ \dot{x}_3 = \alpha_3 x_1 x_2 + \beta_2 x_1 - \beta_1 x_2. \end{cases}$$

Integrable if

- either $\beta_2 = 0$ (and α_i arbitrary),
- or $\alpha_1 + \alpha_2 + \alpha_3 = 0$,

with integrals of motion

$$\begin{array}{lll} H_3(x) &=& \alpha_1 x_2^2 - \alpha_2 x_1^2 - 2(\beta_1 x_1 + \beta_2 x_2), \\ H_2(x) &=& \alpha_3 x_1^2 - \alpha_1 x_3^2 - 2(\beta_1 x_1 + \beta_2 x_2). \end{array}$$

Kahan discretization: integrable for $\beta_2 = 0$...

 $dZV(\beta_1, \beta_2)$ [M. Petrera, A. Pfadler, Yu. S.' 2011]:

$$\begin{cases} \widetilde{x}_1 - x_1 = \varepsilon \alpha_1 (\widetilde{x}_2 x_3 + x_2 \widetilde{x}_3) - \varepsilon \beta_2 (\widetilde{x}_3 + x_3), \\ \widetilde{x}_2 - x_2 = \varepsilon \alpha_2 (\widetilde{x}_3 x_1 + x_3 \widetilde{x}_1) + \varepsilon \beta_1 (\widetilde{x}_3 + x_3), \\ \widetilde{x}_3 - x_3 = \varepsilon \alpha_3 (\widetilde{x}_1 x_2 + x_1 \widetilde{x}_2) + \varepsilon \beta_2 (\widetilde{x}_1 + x_1) - \varepsilon \beta_1 (\widetilde{x}_2 + x_2). \end{cases}$$

Integrable if $\beta_2 = 0$, with two integrals

$$\begin{aligned} \mathcal{H}_2(x;\varepsilon) &= \frac{\alpha_3 x_1^2 - \alpha_1 x_3^2 - 2\beta_1 x_1 + \frac{\beta_1^2}{\alpha_3}}{1 - \varepsilon^2 \alpha_3 \alpha_1 x_2^2}, \\ \mathcal{H}_3(x;\varepsilon) &= \frac{\alpha_1 x_2^2 - \alpha_2 x_1^2 - 2\beta_1 x_1 - \frac{\beta_1^2}{\alpha_2}}{1 - \varepsilon^2 \alpha_1 \alpha_2 x_3^2}. \end{aligned}$$

... and non-integrable for $\beta_2 \neq 0$

Non-integrable if $\beta_2 \neq 0$ and $\alpha_1 + \alpha_2 + \alpha_3 = 0$, with only one integral

$$\mathcal{H}_{3}(x;\varepsilon) = \frac{\alpha_{1}x_{2}^{2} - \alpha_{2}x_{1}^{2} - 2(\beta_{1}x_{1} + \beta_{2}x_{2}) + \frac{\beta_{2}^{2}}{\alpha_{1}} - \frac{\beta_{1}^{2}}{\alpha_{2}}}{1 - \varepsilon^{2}\alpha_{1}\alpha_{2}x_{3}^{2}}.$$

Integrable adjustment

$$\begin{cases} \widetilde{x}_1 - x_1 = \varepsilon \alpha_1 (\widetilde{x}_2 x_3 + x_2 \widetilde{x}_3) - \varepsilon \beta_2 (\widetilde{x}_3 + x_3), \\ \widetilde{x}_2 - x_2 = \varepsilon \alpha_2 (\widetilde{x}_3 x_1 + x_3 \widetilde{x}_1) + \varepsilon \beta_1 (\widetilde{x}_3 + x_3), \\ \widetilde{x}_3 - x_3 = \varepsilon \alpha_3 (\widetilde{x}_1 x_2 + x_1 \widetilde{x}_2) - \varepsilon \beta_2 \frac{\alpha_2 + \alpha_3}{\alpha_1} (\widetilde{x}_1 + x_1) - \varepsilon \beta_1 (\widetilde{x}_2 + x_2) \\ -\varepsilon^2 \beta_1 (\alpha_2 + \alpha_3) (x_1 \widetilde{x}_3 - \widetilde{x}_1 x_3) - \varepsilon^2 \beta_2 \alpha_2 (x_2 \widetilde{x}_3 - \widetilde{x}_2 x_3). \end{cases}$$

This map possesses (for arbitrary α_i) two integrals of motion, $\mathcal{H}_3(x;\varepsilon)$ as above and

$$\mathcal{H}_{2}(x;\varepsilon) = \frac{\alpha_{3}x_{1}^{2} - \alpha_{1}x_{3}^{2} - 2(\beta_{1}x_{1} + \beta_{2}x_{2}) + \frac{\beta_{2}^{2}}{\alpha_{1}} - \frac{\beta_{1}^{2}}{\alpha_{2}}}{1 - \varepsilon^{2}\alpha_{1}\alpha_{2}x_{3}^{2}}.$$

If $\alpha_1 + \alpha_2 + \alpha_3 = 0$, get integrable discretization of $ZV(\beta_1, \beta_2)$.

Generators of a separable pencil of quadrics

Consider a separable pencil of quadrics in \mathbb{P}^3 :

$$\mathcal{P}_{\mu} = \{ X_1 X_2 - \mu X_3 X_4 = 0 \},\$$

where X_j are four independent linear forms on \mathbb{C}^4 . All \mathcal{P}_{μ} pass through the *base set* consisting of four lines

$$\{X_1 = X_3 = 0\} \cup \{X_1 = X_4 = 0\} \cup \{X_2 = X_3 = 0\} \cup \{X_2 = X_4 = 0\}.$$

Two straight line generators of \mathcal{P}_{μ} through $[X_1 : X_2 : X_3 : X_4]$:

$$\ell_1(X) = \Big\{ [X_1 : tX_2 : tX_3 : X_4] : t \in \mathbb{P}^1 \Big\},\$$

and

$$\ell_2(X) = \Big\{ [tX_1 : X_2 : tX_3 : X_4] : t \in \mathbb{P}^1 \Big\}.$$

Let

$$\mathcal{Q}_{\lambda} = \{ \mathcal{Q}_0(x) - \lambda \mathcal{Q}_{\infty}(x) = 0 \}$$

be a second pencil of quadrics. Space \mathbb{P}^3 is foliated by elliptic curves $\mathcal{E}_{\mu\lambda} = \mathcal{P}_{\mu} \cap \mathcal{Q}_{\lambda}$. For any $X \in \mathbb{P}^3$ not from base sets of both pencils, determine μ and λ such that $X \in \mathcal{E}_{\mu\lambda}$. Set

- $i_1(X)$ = the second intersection point of $\ell_1(X)$ with Q_{λ} ,
- $i_2(X)$ = the second intersection point of $\ell_2(X)$ with Q_{λ} .

Birational involutions on \mathbb{P}^3 of deg = 5 in general; under certain geometric conditions, of deg = 3. Leave \mathcal{P}_{μ} and \mathcal{Q}_{λ} invariant.

3D generalization of QRT maps

Definition.

• 3D generalization of a QRT map:

$$g=i_2\circ i_1.$$

• 3D generalization of a QRT root, for the case, when \mathcal{P}_{μ} , \mathcal{Q}_{λ} are invariant under a linear projective map σ on \mathbb{P}^3 :

$$f=i_2\circ\sigma=\sigma\circ i_1,$$

so that $g = f \circ f$.

These birational maps have, by construction, integrals of motion

$$rac{X_1X_2}{X_3X_4}=\mu \quad ext{and} \quad rac{Q_0(x)}{Q_\infty(x)}=\lambda.$$

Discrete time Zhukovsky-Volterra gyrostat as 3D QRT

Theorem [J. Alonso, Yu. S., K. Wei' 2022]. Set

$$\begin{cases} X_1 = \sqrt{\alpha_1} x_2 - \sqrt{\alpha_2} x_1 - \left(\frac{\beta_1}{\sqrt{\alpha_2}} + \frac{\beta_2}{\sqrt{\alpha_1}}\right) x_4, \\ X_2 = \sqrt{\alpha_1} x_2 + \sqrt{\alpha_2} x_1 + \left(\frac{\beta_1}{\sqrt{\alpha_2}} - \frac{\beta_2}{\sqrt{\alpha_1}}\right) x_4, \\ X_3 = x_4 - \varepsilon \sqrt{\alpha_1 \alpha_2} x_3, \\ X_4 = x_4 + \varepsilon \sqrt{\alpha_1 \alpha_2} x_3. \end{cases}$$

Further, set $Q_{\lambda}(x) = Q_0(x) - \lambda Q_{\infty}(x)$, where $Q_0(x) = X_3 X_4$,

$$Q_{\infty}(x) = \alpha_3 x_1^2 - \alpha_1 x_3^2 - 2(\beta_1 x_1 + \beta_2 x_2) x_4 + \left(\frac{\beta_2^2}{\alpha_1} - \frac{\beta_1^2}{\alpha_2}\right) x_4^2.$$

Then \mathcal{P}_{μ} , \mathcal{Q}_{λ} are symmetric w.r.t. $\sigma : x_3 \to -x_3$, and the 3D QRT root $f = \sigma \circ i_1 = i_2 \circ \sigma$ is the adjusted Kahan discretization of $ZV(\beta_1, \beta_2)$.

 $f = \sigma \circ i_1 \qquad \qquad f = i_2 \circ \sigma$