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Symmetric Rigid Body Equations, Flows on Symmetric

Matrices, and Optimal Control

Anthony M. Bloch∗

Department of Mathematics
University of Michigan
Ann Arbor MI 48109

In this talk we consider certain integrable systems, their relationship to optimal control
problems, and to the work of Moser on the geometry of quadrics. In particular we consider
the rigid body problem and its symmetric representation and low rank formulation, a class
of flows on symmetric matrices, and the geodesic flows on Stiefel manifolds. We also discuss
the relationship with kinematic optimal control problems and the so-called Clebsch problem.

We discuss the general Clebsch problem and in particular how the optimal control prob-
lem for the rigid body equations gives rise to their symmetric representation. We also
indicate how this leads to a natural discretization of these equations which is related to the
Moser Veslov equations. We describe how this formulation is related to the Lax pair form.
We also discuss the geometry of the flows on symmetric matrices and the integrability of
this system.

Finally we relate these systems these systems to the Moser formulation of systems in
Lax pair form where the matrix L is the Lax pair in a rank two perturbation of a fixed full
rank matrix. We consider higher perturbations as well as the geodesic flow on the ellipsoid
and the Neumann problem. The latter work is joint work with Gay-Balmaz and Ratiu.

References
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tegrable flows on the space of symmetric matrices, Communications in Mathematical
Physics 290, 399-435 (2009).

Bloch, A. M., P. Crouch, J. E. Marsden, and T. S. Ratiu [2002], The symmetric representa-
tion of the rigid body equations and their discretization Nonlinearity 15, 1309–1341.

Bloch, A.M. F. Gay-Balmaz and T. S. Ratiu [2016], The Clebsch representation in optimal
control, low rank rigid bodies and the Neumann problem, to appear in Proceedings of the
Abel Symposium, 2016.

Bloch, A. M. and A. Iserles [2006], On an isospectral Lie-Poisson system and its Lie algebra,
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Polynomial Dynamical Systems
and Hyperelliptic Functions of Genus 2

VictorM. Buchstaber
(Steklov Mathematical Institute of Russian Academy of Sciences)

buchstab@mi.ras.ru
Consider a non-singular hyperelliptic curve of genus g

Vλ =
{
(x, y) ∈ C2 : y2 = x2g+1 + λ4x

2g−1 + . . . + λ4g+2

}
.

According to Dubrovin–Novikov Theorem, the space of the universal bundle
Ug of Jacobians Jac Vλ is birationally equivalent to C3g. The talk develops of
this result on the basis of the theory of sigma-function σ(u;λ) (see [1, 2]), where
u = (u1, . . . , u2g−1), λ = (λ4, . . . , λ4g+2). The focus will be on the polynomial
dynamical systems on C3g, that are integrable in ℘ω = ℘ω(u;λ) on Ug, where
ω = (j1, . . . , (2g − 1)jg), j1 > 0, . . . , jg > 0, j1 + · · ·+ jg > 2 and

℘ω(u;λ) = − ∂j1+···+jg

∂j1
u1 · · · ∂

jg
ug

lnσ(u;λ).

The differential field Fg of genus g hyperelliptic functions is generated by
the functions ℘ωk

, k = 1, . . . , g, where ω1 = (2, 0, . . . , 0), . . . , ωg =
(1, 0, . . . , 0, 2g − 1). The function 2℘ω1 is a g-zone solution of the KdV hierarchy and

∂
∂u1

℘ωk
= ∂

∂u2k−1
℘ω1 , k = 2, . . . , g. Denote by Fg℘ ⊂ Fg the subring generated

by all functions ℘ω. The Lie algebra Der(Fg℘) of derivations of the ring Fg℘

is a 3g-dimensional Fg℘-module with generators L2q−1 = ∂
∂uq

, q = 1, . . . , g and
L2k−2, k = 1, . . . , 2g (see [3]). Consider in C3g the coordinates
X1 = (x2,0, x3,0, x4,0), . . . , Xg = (x1,2g−1, x2,2g−1, x3,2g−1).

Theorem 1. Set Ag = C[X1, . . . , Xg]. The ring homomorphism

f : Ag → Fg℘, f(Xk) = (℘ωk
,

∂

∂u1
℘ωk

,
∂2

∂u2
1

℘ωk
)

is an isomorphism. It determines a Lie subalgebra Gg ⊂ Der(Ag), which is a free
3g-dimensional Ag-module with generators L2q−1 = ∂

∂uq
, q = 1, . . . , g and

L2k−2, k = 1, . . . , 2g, by Lsf(P ) = f(LsP ), s = 1, . . . , 3g, for any P ∈ Ag.

In [4] the systems Sk in C6, determined by Lk, k = 1, . . . , 6, are described.

Theorem 2. System S1 has the form

x′
2 = x3, x′

3 = x4, x′
4 = 4(3x2x3 + z5), z′4 = z5, z′5 = z6, z′6 = 4(2x2z5 + x3z4).

System S3, given system S1, is determined by the equations

ẋ2 = z5, ż4 = x3z4 − x2z5.

References

[1] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Hyperelliptic Kleinian functions and appli-
cations., Adv. Math. Sci., AMS Transl., 179:2, Providence, RI, 1997, 1–34.

[2] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-Dimensional Sigma-Functions., arXiv:
1208.0990, 2012, 267 pp.

[3] V. M. Buchstaber, D. V. Leykin, Solution of the problem of differentiation of Abelian func-
tions over parameters for families of (n, s)-curves., Funct. Anal. Appl., 42:4, 2008, 268–278.

[4] V. M. Buchstaber, Polinomial dynamical systems and Korteweg-de Vries equation.,
arXiv:1605.04061 v1 [math.DS] 13 May 2016.
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On integrable Toda and Volterra systems

Pantelis A. Damianou

University of Cyprus

We review some recent (and some old) work on Toda and Volterra systems and we pose
some open questions. After defining the classical Toda lattice we study its generalization to
simple Lie algebras due to Bogoyavlenski. We review its well-known multi-hamiltonian struc-
ture and then we present some new results in the case of the exceptional Lie algebra of type
G2. We review the Kostant-Toda lattice and the full Kostant-Toda lattice and its symmetric
counterparts. We then define a large family of Hamiltonian systems which interpolate be-
tween the classical Kostant-Toda lattice and the full Kostant-Toda lattice. There is one such
system for every nilpotent ideal I in a Borel subalgebra b+ of an arbitrary simple Lie algebra
g. We define analogous systems in the case of Volterra lattice. We construct a large family of
evidently integrable Hamiltonian systems which are generalizations of the KM system. The
algorithm uses the root system of a complex simple Lie algebra. The Hamiltonian vector field
is homogeneous cubic but in a number of cases a simple change of variables transforms such
a system to a quadratic Lotka-Volterra system. We present in detail some examples in the
case of A

n
but the algorithm works in the case of an arbitrary simple Lie algebra. We finally

present some recent work on Volterra lattices of full interaction.



SEMITORIC SYSTEMS WITH HYPERBOLIC SINGULARITIES

HOLGER R. DULLIN

School of Mathematics and Statistics, University of Sydney, Australia

Toric integrable systems with their momentum maps whose images are rational poly-
topes are well understood. More recently San Vu Ngoc and Alvaro Pelayo classified semi-
toric system in two degrees of freedom with additional singularities of focus-focus type.
I will show that such a system can always be deformed such that the global S1 action
remains intact, but the focus-focus point is replaced by an elliptic-elliptic point and addi-
tional singularities, some of which are hyperbolic (joint work with Alvaro Pelayo [1]). This
deformation is the Hamiltonian Hopf bifurcation, well known in dynamical systems. Then
I will discuss a particular example which is a deformation of the spin-oscillator (joint work
with Joachim Worthington [2]). The outer boundary of the classical polygonal invariant
remains the same as in the original undeformed system, but inside the image of the mo-
mentum map, a hole appears, plus an additional partial polygonal invariant that fits in
the hole. The quantum mechanics of the problem reveals the beautiful relation between
the classical polygonal invariant and the quantum spectrum in the semiclassical limit, see
the illustrations below. I will conclude with a discussion of polygonal invariants in other
examples and discuss some open problems.
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GENERALIZED HAMILTONIAN MONODROMY AND CIRCLE ACTIONS

KONSTANTINOS EFSTATHIOU

Abstract

Standard Hamiltonian monodromy was introduced by Duistermaat as an obstruction to the
existence of global action-angle coordinates in integrable Hamiltonian systems [1]. It refers to
the monodromy of torus bundles that typically exist in such systems. Fractional Hamiltonian
monodromy, introduced by Nekhoroshev, Sadovskíı, and Zhilinskíı in [5], generalizes standard
monodromy by considering not only torus bundles but also more general fibrations with singular
fibers.

In this talk we present results concerning generalized monodromy that were recently obtained
in collaboration with Nikolay Martynchuk in [3] and [4]. It turns out that, in integrable Hamil-
tonian systems with a Hamiltonian circle action, generalized monodromy and, consequently,
standard monodromy can be solely determined through a careful study of the fixed points of
the circle action and their weights. A basic ingredient of this approach is the definition of gener-
alized parallel transport of homology cycles introduced in [2]. These results will be demonstrated
in several examples of integrable Hamiltonian systems.
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Where has the monodromy gone
in the 3-dim Champagne Bottle?
(A case study in superintegrability)

Francesco Fassò (Università di Padova)

Monodromy is an obstruction to the triviality of the fibration by the in-
variant tori of an integrable or superintegrable Hamiltonian system; it was
discovered by N.N. Nekhoroshev and by J.J. Duistermaat in the 1970s.

The Champagne bottle (a point in a planar central force field shaped
like the bottom of a wine bottle) is likely the simplest completely integrable
system that exhibits monodromy (L. Bates, 1991). Like any planar central
force field, the planar Champagne bottle is a subsystem of the system with
the same central field, but in space. The spatial system is, actually, union of
planar subsystems, and its invariant tori are those of the planar subsystems.
The spatial system however cannot have monodromy, because the base of
the fibration is simply connected.

In order to explain “where the monodromy went” in the 3-dim system
(or, perhaps, “where it comes from” in the 2-dim subsystems) we describe
the 3-dim system not as completely integrable, but as superintegrable, that
is, in the realm of the theory developed by Nekhoroshev and Mischenko
and Fomenko in the 1970s to describe systems which have more integrals of
motion and more symmetry than what is needed for complete integrability.
In superintegrable systems the invariant tori are isotropic, not Lagrangian,
and there is also a coarser, natural foliation of the phase space that is given
by a Casimir map and has coisotropic leaves. The geometry of the regular
part of these foliations is well understood (Nekhoroshev 1972, Dazord and
Delzant 1987). It is the consideration of the singularities of the coisotropic
structure that allows to understand the origin of the monodromy in the
planar subsystems.

This is a join work with Larry Bates (Calgary).
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Compact forms of the Ruijsenaars–Schneider system

László Fehér

Department of Theoretical Physics, University of Szeged
and WIGNER RCP, RMKI, Budapest, Hungary

e-mail: lfeher@physx.u-szeged.hu

Abstract

In 1995 S. Ruijsenaars introduced an interesting real form of the trigonometric
Ruijsenaars–Schneider (RS) system of n interacting particles on the circle for which
the phase space of the relative motion is the projective space CPn−1 equipped with
the Fubini–Study symplectic structure and the angular distance of the neighbouring
particles is bounded from below by a parameter 0 < x < π/n. In the first part of
the talk, we explain how quasi-Hamiltonian reduction leads to a generalization of
this model for any generic value of the parameter 0 < x < π. It turns out that if
x varies in a certain punctured interval around cπ/n, where c ∈ {1, . . . , n − 1} is
coprime to n, then the phase space of the relative motion is again CPn−1 and the
angular distance of the c-th neighbours is suitably constrained. These are called
type (i) models, but type (ii) models also exist in which the particles can collide.
In the second part of the talk, we give a direct construction of the type (i) models
by first mapping the pertinent local RS system onto a dense open submanifold of
CPn−1, and then showing that a suitable conjugate of the local Lax matrix extends
to a smooth function on this compact phase space. Finally, we point out that the
direct construction yields type (i) compactifications of the elliptic RS system, too.
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A.T.Fomenko 
(Moscow State University) 
Topology and Symmetries of the Billiards and Integrable Hamiltonian 
Systems in Mechanics 
 
The results of this talk were recently obtained in collaboration with V.V.Fokicheva (Moscow State 
University). It turns out that two-dimensional locally flat topological billiard systems can be  
considered as  the models for the integrable rigid body dynamics, with two degrees of freedom . 
Description of the Hamiltonian rigid body dynamics is a complex   problem, which  goes back to  
Euler and Lagrange. These systems are described in the six-dimensional phase space and have two 
integrals – the energy integral and the momentum integral.  Of particular interest are the cases of 
 rigid body dynamics, where there exists the additional integral, and  where the Liouville 
integrability  can be established. Because the solutions of many of such a systems are difficult to 
describe, the next step in their analysis is the calculation of topological invariants for integrable  
systems.  More precisely,  the so called “marked molecules” (one-dimensional graphs with “atom-
vertices” and some numerical marks),  which allow us to describe such a systems in the simple terms, 
and also allow us to set the Liouville equivalence between different integrable systems. Topological 
(generalized) billiard systems describe the motion of the material point on a locally plane domain, 
bounded by a system of smooth curves. The phase space is  the four-dimensional manifold.  
Topological locally flat  billiard systems can be integrable for a suitable choice of the boundary, for 
example, when the boundary consists of the arcs of the confocal ellipses, hyperbolas and 
parabolas.  Some of these billiards cannot be  embedded by a global isometry  into Euclidean plane. 
Since such a billiard systems are Liouville integrable, they are classified by the marked molecules  
(which are also called as Fomenko-Zieschang  invariants).In this talk, we simulate many cases of  
motion of a rigid body in 3-space by more simple topological integrable  billiard systems. Namely,  
we set the Liouville equivalence between different systems by comparing the Fomenko-Zieschang 
invariants for the rigid body dynamics and for the topological billiard systems.  For example, the 
 Euler case can be  simulated by the billiards  for all values of energy integral.  For many values of 
energy, such billiard simulation is done for the systems of the Lagrange top and  Kovalevskaya top, 
 then for the Zhukovskii gyrostat,  for the systems by  Goryachev-Chaplygin -Sretenskii, Clebsch,  
Sokolov, as well as expanding the classical Kovalevskaya top – Kovalevskaya- Yahia case. 

 



On the symplectic geometry of the Flaschka transformation and the
Toda lattice system

François Gay-Balmaz (joint work with A. Bloch and T. S. Ratiu)

The Toda lattice system and its many generalizations are fundamental integrable systems that have in-
spired an extraordinarily rich literature on its geometry and dynamics. A key advance in the study of this
system was the introduction of the Flaschka map. Using the tools of cotangent bundle reduction in geo-
metric mechanics, we show that the Flaschka map is the inverse of a momentum map. The diffeomorphic
character of this momentum map is related to the existence of a Lie subalgebra which is a real polarization
and, in addition, satisfies the so-called Pukanszky condition. We then show how this situation occurs for the
generalized Toda lattice flows associated to semisimple Lie algebras, which generalize the Toda lattice flow
on Jacobi matrices. We also apply our construction for certain coadjoint orbits of semidirect products of a
Lie group with a vector space and isolate a class of coadjoint orbits that are symplectomorphic to magnetic
cotangent bundles.
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Quasi-periodicity of relative

quasi-periodic tori

Andrea Giacobbe

Università degli Studi di Catania

Dipartimento di Matematica e Informatica

Abstract

Most well understood dynamical systems either admit invariant tori on which
the dynamics is quasi-periodic or are “close” to having such a property [1].
In the Hamiltonian setting this property is direct consequence of what goes
under the name of complete integrability (or Liouville-Arnol’d integrability),
but quasi-periodicity is typically found also in many non-Hamiltonian systems
(nonholonomic systems, for example).

One of the possible reasons for such a universal behavior could be the exis-
tence of a large group of symmetry together with a reasonably simple structure
of the relative dynamics (i.e. the dynamics projected in the quotient under the
group action). Relative equilibria and relative periodic orbits (i.e. orbits that
project in the quotient onto an equilibrium or onto a periodic orbit) have been
proven to be quasi-periodic [3, 4, 2]. The same statement becomes false when
the relative dynamics is quasi-periodic with two frequencies or more [5].

We give conditions that yield quasi-periodicity of relative quasi-periodic or-
bits (meaning, orbits that project onto quasi-periodic orbits), analyze the as-
sociated geometry of the phase space, connect our analysis with the theory of
reducibility for linear differential equations with quasi-periodic coefficients.

The work is in collaboration with Francesco Fassò and Luis Gracia-Naranjo.
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Compact semi-toric systems,

Hamiltonian S1-actions
and

Integrable surgeries

Sonja Hohloch

(Antwerpen)

Roughly, a semi-toric system on a compact 4-dimensional manifold consists
of two Poisson-commuting Hamiltonian flows one of which is periodic. Thus
the flow parameters induce an S1 ×R-action on the manifold. Under certain
assumptions on the singularities, semi-toric systems have been classified by
Pelayo & Vũ Ngo.c by means of 5 invariants.

Every semi-toric system induces a Hamiltonian S1-action on the manifold
by ‘forgetting’ the R-valued flow parameter. Effective Hamiltonian S1-actions
on compact 4-manifolds have been classified by Karshon by means of so-called
‘labeled directed graphs’.

In the joint work [HSS] with S. Sabatini and D. Sepe, we linked Pelayo
& Vũ Ngo.c’s classification of semi-toric systems to Karshon’s classification
of Hamiltonian S1-actions. More precisely, we showed that only 2 of the
5 invariants are necessary to deduce the Karshon graph of the underlying
S1-action. In an ongoing work with S. Sabatini, D. Sepe and M. Syming-
ton, we study when/how one can ‘lift’ an effective Hamiltonian S1-action on
a compact 4-manifold to a semi-toric system. We found precise conditions
somewhat analogous to Karshon’s lifting requirements. Our construction in-
volves among others the generalization of nodal trades and blow-ups to the
semi-toric world which we define by means of ‘integrable surgeries’.
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Pentagrams, inscribed polygons, and Prym varieties

Anton Izosimov

The pentagram map is a discrete integrable system on the space of planar polygons introduced
by R. Schwartz in 1992. The definition of the pentagram map is illustrated in Figure 1: the image
of the polygon P under the pentagram map is the polygon P ′.

P

P ′

Figure 1: The pentagram map

Surprisingly, this simple map has deep connections with many different areas of mathematics
such as integrable PDEs, cluster algebras etc.

The pentagram map is known to interact nicely with polygons inscribed in conic sections. In
particular, it was observed in [1] and then rigorously proved in [2] that for inscribed polygons first
integrals Ei, Oi of the pentagram map satisfy the relation Ei = Oi. The proof given in [2] is a
rather hard calculation based on explicit formulas for the functions Ei, Oi.

In my talk, I will present a simple proof of the Ei = Oi theorem, and discuss its various
geometric consequences, in particular, the relation between inscribed polygons and Prym varieties.
I will also pose some open questions.

References

[1] V. Ovsienko, R. Schwartz, and S. Tabachnikov. The pentagram map: a discrete integrable
system. Communications in Mathematical Physics, 299(2):409–446, 2010.

[2] R. Schwartz and S. Tabachnikov. The pentagram integrals on inscribed polygons. The Elec-
tronic Journal of Combinatorics, 18(1):P171, 2011.



Igor Krichever

The parametric Riemann-Hilbert problem and its applications

In the talk a new approach to study a behavior of various objects
(vector bundles, differentials ...) on smooth algebraic curves under
degeneration to a singular stable curve will be presented.
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Abel, Stäckel, and Kowalewski.

Franco Magri
Dipartimento di Matematica ed Applicazioni
Università di Milano Bicocca

Abstract.  In the classical literature of Mechanics, one knows a few examples of 
integrable dynamical systems whose equations of motion can be written in the Abel's
form  

                                             dx1               dx2
                                          ———     +   ———   =   a1
                                          √ R(x1)         √ R(x2)

                                            x1 dx1          x2 dx2
                                          ———     +   ———   =   a2
                                          √ R(x1)         √ R(x2)

for a suitable choice of the coordinates x1 and x2, the function R being a polynomial 
function. The Kowalewski's top is one of these examples. In the talk I would like to 
discuss the conditions which allow to work out this kind of representation of the 
equations of motion. I will use the example of the Kowalewski's top to illustrate the 
use of these conditions.



COLLIDING HOLES IN RIEMANN SURFACES AND QUANTUM

CLUSTER ALGEBRAS

MARTA MAZZOCCO†

Abstract. We investigate bordered cusped Teichmüller spaces, which are Te-

ichmüller spaces of Riemann surfaces with at least one hole and at least one
bordered cusp on its boundary. We show how bordered cusps arise when collid-

ing holes in a Riemann surface. In the limit of two colliding holes (or colliding

sides of the same hole), the geodesics that originally passed through the do-
main between colliding holes, which we call chewing-gum, become geodesic

arcs between two bordered cusps decorated by horocycles. The lengths of

these arcs are λ-lengths in Thurston–Penner terminology, or cluster variables
by Fomin and Zelevinsky. We then consider classes of geodesic laminations

comprising both closed curves in the interior of a Riemann surface and arcs
passing between bordered cusps. We find the Poisson and quantum algebras

of these laminations. We demonstrate that for any Riemann surface Σg,s,n of

genus g with s ≥ 1 holes/orbifold points and n ≥ 1 bordered cusps, we have
geodesic laminations that are complete systems of arcs, or λ-lengths together

with closed paths around the holes without bordered cusps or around orbifold

points. From the physical point of view, our construction provides an explicit
coordinatiaation of moduli spaces of open/closed string worldsheets and their

quantization.

†Department of Mathematical Sciences, Loughborough University, LE11 3TU, United King-
dom. Email: m.mazzocco@lboro.ac.uk.
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INTEGRABLE SYSTEMS ON SINGULAR SYMPLECTIC

MANIFOLDS

EVA MIRANDA

Abstract. The starting point of this talk is an action-angle theorem for
integrable systems on b-Poisson manifolds [KMS]. We will also mention
some applications to KAM theory and the description of their cotangent
models [KM].

Several Hamiltonian systems motivating this study come from ce-
lestial mechanics (e.g. the elliptic restricted 3-body problem) and their
singularities (“collisions”) can be described on a bm-symplectic manifold
or bm-folded symplectic manifold [DKM]. Time permitting, we will dis-
cuss some open problems concerning these examples and new strategies
to tackle them.
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NEW CONSTRUCTIONS OF HAMILTONIAN-MINIMAL

LAGRANGIAN SUBMANIFOLDS

TARAS PANOV

Hamiltonian minimality (H-minimality) for Lagrangian submanifolds is a
symplectic analogue of minimality in Riemannian geometry. A Lagrangian
immersion is called H-minimal if the variations of its volume along all Hamil-
tonian vector fields are zero.

A family of H-minimal Lagrangian submanifolds N in a complex space Cm

can constructed from intersections of real or Hermitian quadrics. These in-
tersection of quadrics are parametrised by convex simple polytopes, appear
in the symplectic reduction construction of Hamiltonian toric manifolds,
and are known in toric topology under the name moment-angle manifolds.
The topology of moment-angle manifolds is complicated, but relatively well
understood, and its knowledge can be used to describe new H-minimal La-
grangian submanifolds N with interesting topology. For example, starting
from a polygon, one obtains as N a twisted product of a torus and a Rie-
mannian surface of large genus.

The construction of H-minimal Lagrangian submanifolds N in Cm can
be enhanced by applying it alongside with the symplectic reduction, which
lead to new examples of H-minimal submanifolds in a projective space and
other toric varieties.

Furthermore, manifolds N (both embedded and immersed) appear as de-
generations of Liouville tori for some interesting Hamiltonian systems with
polynomial integrals.

The talk is based on joint works with Andrey E. Mironov.

Department of Mathematics and Mechanics, Moscow State University
E-mail address: tpanov@mech.math.msu.su
URL: http://higeom.math.msu.su/people/taras/
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Conference at CSF Ascona, Integrable Systems, June 19-24, 2016

SYMPLECTIC AND SPECTRAL THEORY OF
INTEGRABLE SYSTEMS

ÁLVARO PELAYO

Abstract. I will report on recent progress on the symplectic and
spectral geometry of classical and quantum finite dimensional in-
tegrable Hamiltonian systems. The talk will emphasize how to use
symplectic and spectral techniques to solve inverse problems about
quantum integrable systems.
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12, 24 AND BEYOND: FROM COMBINATORICS TO

SYMPLECTIC GEOMETRY AND BACK

SILVIA SABATINI

Reflexive polytopes were introduced by Batyrev [Bat] to construct possible pairs
of mirror duals. Since their introduction, there has been extensive work to under-
stand their combinatorial properties, as well as the connection to the geometry of
the underlying toric varieties.

A particularly surprising phenomenon is the “12 and 24 formula”. Namely, re-
flexive polytopes ∆ of dimension n = 2 and 3 satisfy the following striking identities:

• If n = 2 then ∑
e∈∆[1]

l(e) +
∑

f∈∆∗[1]

l(f) = 12 (0.1)

• If n = 3 then ∑
e∈∆[1]

l(e)l(e∗) = 24 , (0.2)

where ∆[1] (resp. ∆∗[1]) denotes the edge set of ∆ (resp. of its dual ∆∗), e∗ the
edge in ∆∗[1] dual to e ∈ ∆[1], and l(e) the number of lattice points on e minus
one. In [GHS] we generalise the formulas above to Delzant reflexive polytopes of
any dimension n, obtaining∑

e∈∆[1]

l(e) = 12f2 + (5− 3n)f1 , (0.3)

where fi denotes the number of faces of ∆ of dimension i.
Delzant reflexive polytopes are in one-to-one correspondence with monotone

symplectic toric manifolds, which can be thought of as very special completely
integrable systems satisfying c1 = [ω], where c1 denotes the first Chern class of
the tangent bundle. Their classification and properties, as well as that of Delzant
polytopes, is still under certain aspects a wide open problem.

We prove that (0.3) is a consequence of a much more general phenomenon which
involves compact symplectic manifolds with much smaller symmetries admitting a
toric 1-skeleton. For any such space we prove that the integral of c1 on the toric 1-
skeleton only depends on the even Betti number of the manifold. The proof uses in
an essential way the ‘rigidity of the Hirzebruch genus’ and its behavior at −1. This
result implies, in turn, bounds on the Betti numbers of some monotone symplectic
manifolds.
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Elliptic fibrations arising from free rigid bodies

Daisuke Tarama∗

The free rigid body dynamics is a typical solvable example in analytical mechanics.
The dynamics can essentially be described by Euler equation on so(3) ∼= R3, which is
completely integrable. The integral curve of this equation is in fact a smooth elliptic
curve. It is also known that one can associate a Lax equation whose spectral curve is
again a smooth elliptic curve.

Varying the parameters of the system, one obtains two elliptic fibrations over three-
dimensional projective space. In this talk, the singular fibres and the monodromy of these
fibrations, as well as their mutual relation, are analysed and the link to Birkhoff normal
forms defined around equilibrium points will also be mentioned.

This talk is based on the collaborations [1, 2, 3] with Isao Naruki (Ritsumeikan Uni-
versity) and Jean-Pierre Françoise (Laboratoire J.-L. Lions, Universié P.-M. Curie).
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NON-HAMILTONIAN SYMPLECTIC CIRCLE ACTIONS WITH

ISOLATED FIXED POINTS

SUSAN TOLMAN

Abstract. A circle action on a symplectic manifold is ”symplectic” if it pre-

serves the symplectic form and ”Hamiltonian” if there exists a moment map.

In the latter case, many invariants of the manifold are determined by the
fixed set. Therefore, it is important to determine when symplectic actions

are Hamiltonian. We answer a question posed by McDuff and Salamon by

constructing a non-Hamiltonian symplectic circle action with exactly 32 fixed
points on a closed-connected, six-dimensional symplectic manifold. Based in

part on joint work with J. Watts

1



A semi-toric version of Atiyah - Guillemin & Sternberg theorem
Christophe Wacheux∗

May 30, 2016
Abstract

For an integrable Hamiltonian system defined as a moment map F = (f1, .., fn) on a (compact,
connected) symplectic manifold (M2n, ω), there exists a notion of non-degeneracy in the spirit of Morse
theory. At non-degenerate critical points of F , there exists Darboux coordinates (x1, ξ1, .., xn, ξn) in
which the moment map can be linearized, each component being of one of the following types

• elliptic: fi = x2
i + ξ2

i

• hyperbolic: fi = xiξi

• focus-focus:
{
fi = xiξi + xi+1ξi+1

fi+1 = xiξi+1 − xi+1ξi

• regular (or transverse): fi = ξi

Definition 0.1. A semi-toric system is an integrable Hamiltonian system with only non-degenerate points,
without hyperbolic components, and for which at least n− 1 components have periodic flows, thus yieding
a Tn−1-action.

A famous particular case of semi-toric systems are the toric systems, that yield a Hamiltonian
Tn-action.
Theorem 0.2 (Atiyah - Guillemin & Sternberg). Given a Hamiltonian Tk-action on M with moment
map J , we have that

1. The fibers of J are connected,
2. The image of M by J is a convex polytope.
A theorem of Delzant states that for toric systems (the case k = n) under mild conditions, this moment

polytope characterizes entierely the system up to Tn-equivariant symplectomorphism. The moment
polytope describing elegantly the dynamics of the system, these two results opened a whole new approach
to try to classify and describe different integrable Hamiltonian systems in various settings.

When trying to extend it to semi-toric systems, we encounter several problems: the image of the
moment map is not a convex polytope anymore, there is no reason for the fibers to be connected and the
image of the moment map is not the only invariant anymore. Yet, in dimension 2n = 4, a description of
the image of the moment map and a classification “à la Delzant” for semi-toric systems was obtaind by
San Vũ Ngo.c and Pelayo.

In this talk, I will show how we can obtain a version of Atiyah - Guillemin & Sternberg theorem for
semi-toric systems in all dimensions. This result, in turn, is of great promise in the view of a classification
and description of semi-toric systems. The proof of this results relies on manipulation of local models for
the moment map, and the stratification of semi-toric systems.

F1

F2

F3

(0,1,0)

(0,0,2)

(1,0,0)

F3 = 0

F2 = 0

F1 = 0

F1 + F2 + F3 = 1

Figure 1: Left: an example of a toric system on CP3, Right: an example of a possible semi-toric system

∗christophe.wacheux.math@gmail.com
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Speaker : Nguyen Tien Zung

Title : Linearization of smooth integrable non-Hamiltonian systems

Abstract : In this talk, I'll discuss the problem of linearization of nondegenerate 
singularities of smooth integrable non-Hamiltonian systems. This problem is much 
more difficult than the analogous problems for smooth integrable Hamiltonian systems 
(Eliasson theorem) and for analytic integrable non-Hamiltonian systems (which I 
studied some years ago). New technical tools are required to solve the problem in the
most general case.

This talk is based on joint work in progress with Marc Chaperon, Truong Hong 
Minh and Jiang Kai.
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Topology of Hyperbolic Actions of Rn on n-manifolds

Damien Bouloc
Institut de Mathématiques de Toulouse, Université Paul Sabatier

The study of nondegenerate actions of Rn on compact connected manifolds of dimen-
sion n has been initiated by Minh and Zung in their 2014 paper. In particular, they
defined an invariant t(ρ) of such an action ρ called the toric degree, and showed that the
study of ρ can be reduced to the study of a torus action ρT of Tt(ρ) on M and of a reduced
nondegenerate action ρR of Rn−t(ρ) on the quotient space M/ρT (satisfying t(ρR) = 0).
For this reason, it is interesting to study in more detail the hyperbolic actions of Rn on
n-manifolds, that is the nondegenerate actions with toric degree equal to zero.

This poster presents some results about the hyperbolic actions of Rn on a connected
compact n-manifold M . We give some examples in dimension 2 and 3 (it is still an open
problem, for a fixed manifold of dimension n ≥ 3, to find hyperbolic actions of Rn on
M). We explain the behavior of the R-action t 7→ ρ(−tv, .) induced by a fixed vector
v ∈ Rn and how it is related to Morse functions. We also give some results about the
numbers of fixed points and of hyperbolic domains (i.e. orbits of maximal dimension),
with a particular attention to the case of surfaces.



The Structure of the Polynomial Lie Algebra
of Differentiation of Abelian Functions of Genus 2

E. Yu. Bunkova
(Steklov Mathematical Institute of Russian Academy of Sciences)

bunkova@mi.ras.ru

We consider the fiber bundle whose base is the parameter space B
of the family of non-degenerate curves of the form

Vλ = {(x, y) ∈ C2 : y2 = x5 + λ4x
3 + λ6x

2 + λ8x+ λ10}
and whose fibers are the Jacobi varieties of these curves.

The problem of constructing the Lie algebra of derivations of the
field of fiberwise Abelian functions on the total space of this bundle
was adressed in [1] and [2].

Consider the complex linear space C6 with coordinates
(x2, x3, x4, z4, z5, z6), and C4 with coordinates λ = (λ4, λ6, λ8, λ10).
In [1] a homogeneous polynomial map π : C6 → C4, was introduced.
There is a diffeomorphism ϕ of bundles from the bundle described
above to the bundle determined by this polynomial map with base B.
It can be described in terms of hyperelliptic functions (see [2]):
x2 = ℘2,0, x3 = ℘3,0, x4 = ℘4,0, z4 = ℘1,3, z5 = ℘2,3, z6 = ℘3,3.

Consider the polynomial vector fields Lk, k = 0, 1, 2, 3, 4, 6, on C6:L0

L1

L3

 =

2x2 3x3 4x4
x3 x4 R5

z5 z6 R7

 ∂
∂x2
∂
∂x3
∂
∂x4

+

4z4 5z5 6z6
z5 z6 R7

Q7 L1Q7 L1L1Q7

 ∂
∂z4
∂
∂z5
∂
∂z6

 ,

where R5 = 4(3x2x3 + z5), R7 = 4(2x2z5 + x3z4), Q7 = x3z4 − x2z5.
The polynomial vector fields L2, L4, L6 are described in [2]. The fields
Lk are linearly independent outside their discriminant variety ∆ ⊂ C6

and tangent to this variety. We have B = C4\π(∆).
The fields ϕ∗Lk generate the Lie algebra of derivations of the field

of fiberwise Abelian functions.
In the talk we will describe the structure of this Lie algebra.
This work was supported in part by the program ”Fundamental

Problems of Nonlinear Dynamics” of the Russian Academy of Sciences.
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"Multiparameter bi-Hamiltonian structures and related
integrable systems"
Alina Dobrogowska

Institute of Mathematics, University of Białystok
Ciołkowskiego 1M
15-245 Białystok

Poland
alina.dobrogowska@uwb.edu.pl

We construct R operators on the Lie algebra gl(n,R) or more generally Hilbert–
Schmidt operators L2 in Hilbert space. These operators are related to a multi-
parameter deformation given by a sequence of parameters α = {a1, a2, . . . }. We
determine for which choices of parameters R operators are R-matrices. We also
construct the Lax pair for the corresponding Hamilton equations.



Families of superintegrable systems
Damianou Pantelis, Evripidou Charalampos, Kassotakis Pavlos

(University of Cyprus)

In this poster I will present an infinite family of superintegrable Hamiltonian
systems. The systems we consider are of Lotka Volterra type of maximal interaction
described by the differential equations

ȧi = ai

n∑
j=1

C
(k)
i,j aj , 0 ≤ i, j ≤ n,

where C(k) is the matrix

C(k) =



0 1 1 · · · 1 −1 −1 · · · −1 −1
−1 0 1 · · · 1 1 −1 · · · −1 −1

−1 −1 0 · · · 1 1 1
. . . −1 −1

...
...

. . .
...

...
...

. . .
. . .

...
−1 −1 −1 · · · · · · · · · · · · · · · 1 −1
1 −1 −1 · · · · · · · · · · · · · · · 1 1
...

...
. . .

...
...

...
. . .

...
...

1 1 1 · · · −1 −1 −1 · · · 0 1
1 1 1 · · · −1 −1 −1 · · · 1 0


.

The superscript k is the minimum j such that C
(k)
j+1,n = 1 and can take the values

k = 0, 1, . . . ,
⌊
n−1
2

⌋
for n ∈ N. For each such n and k we show that the corresponding

system has n − k − 1 independent first integrals. The k + 1 of these integrals are
polynomial, obtained from a Lax pair of the system, while the rest are rational. The
extreme cases k = 0 and k =

⌊
n−1
2

⌋
, give rise to well known results.
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The inverse problem of the calculus of variations
and applications.

Marta Farré Puiggaĺı
Instituto de Ciencias Matemáticas (ICMAT)

Abstract:
The inverse problem of the calculus of variations con-
sists in determining whether a given system of second
order differential equations is equivalent to some regu-
lar Lagrangian system. I will explain some results and
applications of the inverse problem to hamiltonization
of nonholonomic systems and stabilization of controlled
Lagrangian systems.
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Explicit Symmetry breaking for Hamiltonian systems with symmetries
Marine Fontaine (The University of Manchester)

Using the Marle-Guillemin-Sternberg Normal Form Theorem, we give a geometric approach to study the
phenomenon of forced symmetry breaking in equivariant Hamiltonian systems. We study the particular
case where the perturbed system still has some symmetries. We give an estimate for the number of
equilibria that will persist under this perturbation, provided we verify some non-degeneracy conditions.
Some preliminary results for persistence of relative equilibria are also treated.
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Lax representation of the hyperbolic van Diejen
system with two coupling parameters

Tamás F. Görbe

Department of Theoretical Physics, University of Szeged
Tisza Lajos krt 84-86, H-6720 Szeged, Hungary

website: www.staff.u-szeged.hu/∼tfgorbe
e-mail: tfgorbe@physx.u-szeged.hu

Abstract

In his 1994 thesis, Jan Felipe van Diejen proved the quantum integrability of the
hyperbolic Ruijsenaars-Schneider model attached to the BCn root system. This led
to explicit formulas for a complete set of Poisson commuting functions in the classical
limit, but a Lax matrix generating these Hamiltonians as its spectral invariants was
lacking ever since*. In a recent joint work with B.G. Pusztai [arXiv:1603.06710], we
constructed a Lax pair for the classical hyperbolic BCn system with two independent
couplings. We showed that the dynamics can be solved by a projection method
and worked out the asymptotic form of the solutions. The equivalence of the first
integrals provided by the eigenvalues of our Lax matrix and van Diejen’s commuting
Hamiltonians was also demonstrated.

*Except for the 1-coupling cases obtained from the standard Am models by ‘folding’.



Singular points of Nijenhuis operators and

linearization

Andrei Konyaev, Moscow State University

May 28, 2016

Nijenhuis operators are operator fields with vanishing Nijenhuis torsion. We
define the notion of singular points for operator fields. We show that the tangent
space in singular has a natural structure of so-called left-symmetric algebras
(LSA). These algebras naturally appear in variety of settings. For example, one
class of these algebras is known as Novikov algebras. To study the linearization
problem we introduce the notion of non-degenerate LSAs and study the question
of existence of such algebras in two-dimensions. To do so we classify all real
LSAs in dimension two and for each algebra we solve the question of its non-
degeneracy.
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Results on the Topology of Gelfand-Zeitlin Systems
Jeremy Lane (University of Toronto)

In 1983, Guillemin and Sternberg constructed completely integrable systems
on U(n) and SO(n) coadjoint orbits which they called Gelfand-Zeitlin systems for
their relation to Gelfand-Zeitlin bases in representation theory. These systems are
constructed from of non-Abelian Hamiltonian symmetries of the coadjoint orbits
which are maximal in the sense that they are multiplicity-free. Using the de-
scription of U(n) coadjoint orbits as congruency classes of Hermitian matrices,
Guillemin and Sternberg proved that the image of these Gelfand-Zeitlin systems
are convex polytopes. The description of these convex polytopes and the associ-
ated Lagrangian torus fibrations of the coadjoint orbits was employed recently by
Milena Pabiniak to prove tight lower bounds on the Gromov width of U(n) and
SO(n) coadjoint orbits.

Motivated by Pabiniak’s work, and an interest in the topological structure of
integrable systems, this work explores the topological properties of momentum
maps constructed by Thimm’s trick, of which the Gelfand-Zeitlin systems on U(n)
and SO(n) coadjoint orbits are an example. Suppose M is a connected symplec-
tic manifold equipped with a Hamiltonian action of a compact connected group
G. Using results of various authors on proper torus momentum maps, we give a
short proof that a proper momentum map constructed by Thimm’s trick on M has
convex image and connected fibres. Our topological approach to this problem al-
lows us to prove connectedness even for fibres where the momentum map is not a
smooth function. For Gelfand-Zeitlin systems (where M is multiplicity-free), we
can also prove that these ‘marginal’ fibres are smooth submanifolds. The structure
of these integrable systems near the marginal fibres remains somewhat mysterious.

As an example, we consider a one-parameter family of coadjoint orbits of the
exceptional Lie group G2. These coadjoint orbits are 5 dimensional projective
subvarieties of CP13 with degree 18, that come equipped with a multiplicity-free
action of the subgroup SU(3) ≤ G2 that was described by Chris Woodward. We
construct a Gelfand-Zeitlin system on these orbits and give a complete description
of it’s Gelfand-Zeitlin polytope, as well as the associated Lagrangian torus fibra-
tion of an open dense submanifold. Following the approach of Pabiniak (used
earlier by Traynor and Schlenk), this data gives a tight lower bound on the Gro-
mov width of these coadjoint orbits that agrees with the upper bounds obtained by
Caviedes Castro and results of Loi-Zuddas.



FRACTIONAL MONODROMY AND BEYOND

NIKOLAY MARTYNCHUK

The Euler number of a principal circle bundle can be defined in several
equivalent ways:

1: as a self-intersection number,
2: as an obstruction to the existence of a global section,
3: via the classifying space BU(1).

Each of these ways has a natural extension to Seifert fibrations and they
all give the same result. In our recent work with K. Efstathiou [3] we have
shown that the Euler number of a principal circle bundle can be also defined

4: via the parallel transport of homology cycles.

In this poster we present an extension of 4 to Seifert fibrations. Surprisingly,
such an extension allows to compute standard (in the sense of Duistermaat
[1]) and fractional (in the sense of K. Efstathiou and H. W. Broer [2]) mon-
odromy in various integrable Hamiltonian system.
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Analytic extensions of frequencies of integrable

PDEs and applications

Jan-Cornelius Molnar

May 27, 2016

The KdV2 equation and the mKdV equations on the circle T � R=Z, are Hamiltonian PDEs

@tu � @x@uHkdv2; @tv � @vHmkdv ;

with Hamiltonians

Hkdv2�u� � 1
2

Z
T
��@2

xu�2 � 10u�@xu�2 � 5u4� dx;

Hmkdv�v� �
Z

T
�v@3

xv � 3v2v@xv� dx:

They are both completely integrable in the strongest possible sense, meaning that they admit

global Birkhoff coordinates

� : L2 ! h1=2; u, �zn�n2Z; 	 : L2 ! ‘2; v , ��n�n2Z;

so that Hkdv2 and Hmkdv , respectively, when restricted to appropriate subspaces of sufficient

regularity, are real analytic functions of the action In � znz�n and Jn � �n�n, respectively. In

these coordinates, the Hamiltonian systems for mKdV and KdV2 are given by

@tzn �!kdv2
n zn; !kdv2

n � @InHkdv2;

@t�n �!mkdvn �n; !mkdvn � @JnHmkdv ;

where !kdv2
n and !mkdvn , respectively, is called the nth KdV2 and mKdV frequency, respec-

tively.

In form of a case study for these two equations, we discuss a novel approach of repre-

senting frequencies of integrable PDEs which allows to extend them analytically to spaces of

low regularity and to study their asymptotics. Applications include properties of the actions

to frequencies map as well as wellposedness results in spaces of low regularity. This is joint

work with Thomas Kappeler.
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The combinatorial invariant of semitoric manifolds

Joseph Palmer

We introduce a new combinatorial symplectic invariant of compact symplectic
semitoric 4-manifolds, the semitoric helix. It encodes information about the singular
affine structure in a neighborhood of the set of elliptic singular points of the system
by correcting for the effects of the Duistermaat monodromy from the nodal singular
points. The semitoric helix is particularly well-behaved with respect to semitoric
blowups/downs and we use this new invariant paired with a novel algebraic technique
to study how semitoric manifolds transform with respect to these operations.

This work is joint with Álvaro Pelayo and Daniel M. Kane.
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An Algebraic Geometric Classification
of Superintegrable Systems

in the Euclidean Plane

Konrad Schöbel

We prove that the set of second order maximally superintegrable systems in the complex
Euclidean plane carries a natural structure of a projective variety by deriving the correspond-
ing system of homogeneous algebraic equations. We then solve these equations explicitly and
give a detailed analysis of the algebraic geometric structure of the corresponding projective
variety. This avoids the need for computer algebra and considerably simpli�es the classi�-
cation of superintegrable systems. In particular, a unique completely decomposable ternary
cubic as well as a planar line triple arrangement is associated to every superintegrable sys-
tem, providing intrinsic geometric as well as algebraic labelling schemes for superintegrable
systems and their normal forms under isometries. This joint work with Jonathan Kress initi-
ates a programme to “algebro-geometrise” the classi�cation of superintegrable systems and
their applications to special functions.



Focus-focus singularities in real geometric
quantisation

Romero Solha (UFMG)
Joint work with Eva Miranda (UPC) and Francisco Presas (ICMAT)

Abstract

This poster address the focus-focus contribution to geometric
quantisation, with real polarisations given by integrable systems. Near
a singular Bohr–Sommerfeld focus-focus fibre of an integrable system
in dimension four, the zeroth and first cohomology groups computing
geometric quantisation are trivial, but the second cohomology group
is not. The latter is actually infinite dimensional, contrary to previous
expectations.

The fact that both hyperbolic and focus-focus type of singularities
provide infinite dimensional contributions to real geometric
quantisation (even though only Bohr–Sommerfeld focus-focus fibres
appear, whereas all hyperbolic singularities contribute) raises doubt
about its applicability to Theoretical Physics. One could also
conjecture that stable equilibria give no contribution to geometric
quantisation (as it is the case for elliptic singularities), whilst
unstable equilibria give infinite dimensional contributions (even if the
singularity is degenerate, but possibly assuming a Bohr–Sommerfeld
condition).
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ALGEBRAIC COMPLEXITY-ONE SPACES AND SEMITORIC

SYSTEMS

HENDRIK SÜSS (JOINT WORK WITH CHRISTOPHE WACHEUX)

Definition 1 (Karshon-Tolman). A symplectic manifold M2n with a Hamiltonian
action of (S1)n−1 is called a complexity-one space.

These spaces were classified by Karshon in the 4-dimensional case in terms
of labelled graphs and in higher dimensions by Karshon and Tolman. For those
complexity-one spaces which arise from a smooth projective variety with an alge-
braic torus action there also exists an alternative classification by piecewise linear
decompositions of the Duistermaat-Heckman function. More precisely, consider the
pushforward of the Liouville measure via the moment map. This gives a measure
on the moment polytope P of the torus action, called the Duistermaat-Heckman
measure. The density function ρ : P → R of this measure is piecewise linear and
concave. Now, algebraic complexity-one spaces M correspond to certain collections
of piecewise linear and concave functions ρ1 . . . , ρr on some polytope P , where
ρ =

∑
i ρi holds for the Duistermaat-Heckman function of M .

= + +

Figure 1. Duistermaat-Heckman decomposition for the blowup of
P1
C × P1

C in (0, 0), (0, 1) and (∞,∞).

In the 4-dimensional case we can compare the description by Duistermaat-
Heckman decompositions with Karshon’s labelled graphs and show how to obtain
one from the other.

In dimension four Hohloch, Sabatini, Sepe and Symington determined for which
complexity-one spaces the moment map of the torus action can be extended in a
well-behaved way to an integrable systems—a so-called semitoric system. They
formulated a criterion in terms of Karshon’s graph. By using our translation and
existing results of Ilten and Süß on toric degenerations of algebraic complexity-one
spaces we obtain the following reformulation.

Corollary 2. A 4-dimensional complexity-one space admits a semi-toric system if
and only if it admits an equivariant degeneration to a toric variety.

This observation motivated our ongoing project where we are studying the exis-
tence of semitoric systems on algebraic complexity-on spaces in higher dimensions.
Here, the situation becomes more involved and the statement of the corollary does
not generalise directly.



Stability of volume forms on noncompact

�ber bundles

Xiudi Tang

joint with �Alvaro Pelayo

May 28, 2016

Abstract

The goal of this paper is to generalize the Moser stability theorem for
volume forms on smooth manifolds to smooth �ber bundles with non-
compact �bers over a closed manifold. Let F be a noncompact manifold,
f : F ! R an exhausion function and let B be a closed manifold. Con-
sider a �ber bundle � : M ! B with �ber F and structure group G, which
consists of maps preserving f and ends of F , and there is an arbitrarily
high regular level set of f , whose connected components are invariant
under G. If !p and �p are volume forms on the �ber ��1(p) depending
smoothly on p 2 B, and satisfy some additional conditions, we will prove
that there exists a volume preserving di�eomorphism ' of M such that�
'j��1(p)

�
�

!p = �p. If B = fpg is a point this recovers the Moser sta-
bility theorem (for volume forms on compact F ) and its generalization to
Greene and Shiohama for noncompact F . To bridge the gap between base
fpg and a general base B and to construct ' we use a result of Edward
Bueler on Hodge theory for weighted noncompact manifolds.
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Determining Killing tensors of higher rank

Andreas Vollmer*

Consider a 4-dimensional manifold endowed with a (pseudo-)Riemannian metric. Con-
stants of motion are smooth functions on the phase space that remain unchanged along
solutions of the geodesic equation.
Killing tensors are in 1-to-1 correspondence with constants of motion that are homoge-
neous polynomials in the momenta (i.e. the fiber coordinates of the cotangent space).
The most basic examples of Killing tensors are the metric and the (0,1)-tensors corre-
sponding to Killing vector fields.

Killing tensors play a crucial role in physics, as for instance in the classical Kepler problem.
Another famous example are Kerr space-times, for which a non-trivial second-rank Killing
tensor has been found by B. Carter in 1968.

The poster presents an approach how to prove non-existence of non-trivial Killing tensors
of a given rank, or to find them if they exist. We use this method to prove that Weyl
metrics (static and axially symmetric vacuum metrics) have no non-trivial Killing tensors
of cubic rank. In addition, we demonstrate how the method can be used on a computer
in a self-contained way in case of explicitly given metrics (a first implementation of this
computer-based approach was given in [1] by B. Kruglikov & V. Matveev).

The poster will also include a similar application in sub-Riemannian geometry (joint
work with B. Kruglikov and G. Lukes-Gerakopoulos). Moreover, it will give an outlook
on research perspectives, e.g. in the context of C-metrics and Ricci solitons.
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On the Birkhoff Normal Form of the mKdV, NLS
and sine-Gordon hierarchies

Yannick Widmer

May 29, 2016

The mKdV equation on the circle T = R/Z admits two representations as a Hamiltonian PDE

∂tu = ∂x∂K(u) = −i(∂2S)(u, u),

with corresponding Hamiltonians

K(u) = 1
2

∫
T
(∂xu)2 + u4 dx, S(v1, v2) = i

∫
T
(v1∂

3
xv2 − 3v2

1v2∂xv2) dx.

Both representations admit an infinite sequence of recursively defined pairwise Poisson commuting
integrals. In the first case, this sequence is referred to as the mKdV hierarchy withK1 = 1

2
∫
R u

2 dx,
K2 = K, . . . and in the second case as the NLS hierarchy S1 =

∫
T v1v2 dx,

S2 = i
∫
T
v2∂xv1 dx, S3 =

∫
T
(∂xv1∂xv2 + v2

1v
2
2) dx, S4 = S, . . .

Note that S3 is the NLS Hamiltonian. Our main result is, that every Hamiltonian PDE in the
mKdV hierarchy is contained in the NLS hierarchy. More precisely, denoting by YKm

the mth
Hamiltonian vector field of the mKdV hierarchy and by XSn

the nth Hamiltonian vector field of
the NLS hierarchy, then for each m > 1,

XS2m
(u, u) = (YKm

(u), YKm
(u)), ∀ u ∈ Hm(T,C) (1)

The proof relies in a crucial on the fact that both hierarchies are completely integrable in the
strongest possible sense, meaning that there exist global Birkhoff coordinates

Ψ: L2 → h1/2, u 7→ (ζn)n∈Z, Φ: L2 → `2, v 7→ (zn)n∈Z,

in which the transformed Hamiltonians, when restricted to subspaces of sufficient regularity, are
real analytic functions of the actions Jn = ζnζn and In = znzn, respectively. In these coordinates,
the corresponding Hamiltonian systems are given by

∂tζn = ηn,mζn, ηn,m := ∂JnKm, ∂tzn = ωn,mzn, ωn,m := ∂InSm.

As an application of (1) we compare the solution curves of the vectorfields XS2m and YKm in their
corresponding Birkhoff coordinates and show that

ηm
n = (−1)mωn,2m.

This is joint work with Jan Molnar.
In a related work we show that the sine-Gordon equation can be embedded in the phase space

of mKdV in a way that it’s transformed Hamiltonian is also a function of the actions alone.



Moment Maps in Perturbed Semitoric Integrable Systems
Holger Dullin, Joachim Worthington (University of Sydney)

In their 2012 paper, Pelayo and Vũ Ngo.c studied the dynamics of semitoric
systems. In particular, they considered coupled spin-oscillator systems near
focus-focus singularities. Semi-global symplectic invariants were calculated for
the semitoric system with a focus-focus singularity.

D. and Pelayo showed that one can modify generic semitoric integrable sys-
tems around a focus-focus singular point to create a Hamiltonian Hopf bifurca-
tion. This creates a hyperbolic singular point.

In this poster we will shed some light on interpreting the change in the
symplectic invariants as a system undergoes this bifurcation. We will look at
a particular example which has been studied in the two forementioned papers.
We show that the polygonal invariants are conserved in the perturbed system,
and calculate a new action which is created by the formation of the singular
point.
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Stokes phenomenon, dynamical r-matrices and
quantum groups

Xiaomeng Xu
Université de Genéve

Abstract

Our study lies at the crossroads of Stokes phenomenon, dynamical r-matrices and quan-
tum groups. In particular, the main results in this poster are

• A construction of a gauge transformation between the standard classical r-matrix and
the Alekseev-Meinrenken dynamical r-matrix, using the Stokes data of a certain irregu-
lar Riemann-Hilbert problem. Geometrically, this gauge transformation is interpreted
as a generalization of a symplectic neighborhood version of the Ginzburg-Weinstein
linearization theorem.

• An extension to the quantum analogue of the Stokes phenomenon, and its relation with
the Yang-Baxter equation. Furthermore, we prove that the quantum Stokes factors sat-
isfy a quantum isomonodromic equation, which is a quantization of the isomonodromic
equation of Boalch, Jimbo, Miwa and Ueno.
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