Integrable deformation of cluster map

Wookyung Kim

Supervised by:

Jan Grabowski (Lancaster University)

Andrew Hone (University of Kent)

Lancaster University

Conference FDIS 2023

Cluster algebra (coefficient free case)

- Cluster algebras are a class of commutative algebras, which were introduced by Fomin and Zelevinsky
- Initial data formed by
(1) N-tuple of distinguished generators $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{N}\right)$ in a field of rational functions \mathcal{F}. Generators x_{i} are called cluster variables
(2) A quiver, Q, which is a directed graph with N vertices. (In cluster algebras, we are considering the quiver, which does not possess 2 -cycles or loops)
The pair (\mathbf{x}, Q) is called an initial seed.
- A cluster algebra $\mathcal{A}(\mathbf{x}, Q)$ is a subalgebra of the field \mathcal{F} whose generators obtained from \mathbf{x} by the special iterative process called mutation, μ_{k}
- The mutation consists of two parts: Quiver mutation and Cluster mutation

Quiver mutations

Quiver mutation at node k consists of three steps
(1) For each subquiver $i \xrightarrow{p} k \xrightarrow{q} j$, insert an edge $i \xrightarrow{p q} j$
(2) Reverse all arrows which are connected to $k, j \xrightarrow{q} k \xrightarrow{p} i$
(3) Remove any 2-cycles which are formed by inserting arrows.

Example (Quiver mutation at node 2)

Cluster mutations

- A quiver Q can be identified with an $N \times N$ skew-symmetric matrix, B, known as exchange matrix. The exchange matrix also transforms into a new exchange matrix under the mutation:

$$
\left(B^{\prime}\right)_{i j}=\left(\mu_{k}(B)\right)_{i j}= \begin{cases}-b_{i j} & \text { if } i=k \text { or } j=k \\ b_{i j}+\frac{1}{2}\left(\left|b_{i k}\right| b_{k j}+b_{i k}\left|b_{k j}\right|\right) & \text { otherwise }\end{cases}
$$

- Cluster mutations: Given an initial cluster which is n-tuple $\mathbf{x}=\left(x_{1}, \ldots x_{N}\right)$. The cluster mutation in the direction k is $\mu_{k}(\mathbf{x})=\left(x_{1}, \ldots, x_{k-1}, x_{k}^{\prime}, \ldots, x_{N}\right)$ where the new generator x_{k}^{\prime} is defined by the expression

$$
\mu_{k}\left(x_{k}\right)=\frac{\prod_{i=1}^{N} x_{i}^{\left[b_{i}\right]+}+\prod_{i=1}^{N} x_{i}^{\left[-b_{i k}\right]+}}{x_{k}}, \quad\left[\pm b_{i k}\right]_{+}=\max \left(0, \pm b_{i k}\right)
$$

This expression is known as a (coefficient free) exchange relation.

Periodicity and Laurent phenomenon

Definition (Mutation periodic)

The quiver Q with N nodes is mutation periodic with period m if

$$
\mu_{i_{m}} \mu_{i_{m-1}} \cdots \mu_{i_{2}} \mu_{i_{1}}(Q)=\rho^{m}(Q)
$$

for $N \geq m$, where $\rho:(1,2, \ldots, N) \rightarrow(N, 1,2, \ldots, N-1)$ is the cyclic permutation.

The quiver corresponding to type A_{2} is mutation periodic with period 1 as $\mu_{1}(Q)=\rho(Q)$. Define $\varphi=\rho^{-1} \mu_{1}$, then $\varphi(Q)=Q$. We refer the map φ as cluster map.

Theorem (Laurent phenomenon)

Every cluster variable generated by the exchange relation is a Laurent polynomial in the initial variables.

Integrable Cluster map

- The cluster map φ can be considered as a discrete dynamical system. The trajectory of the system is represented by the iteration of the map
- Gekhtman, Shapiro and Vainshtein introduced a log-canonical Poisson bracket, $\left\{x_{i}, x_{j}\right\}=P_{i j} x_{i} x_{j}$, where matrix P (Poisson tensor) satisfies $P B=\lambda D$
- It is compatible with cluster algebra in the sense that

$$
\mu_{k}:\left(\left(x_{1}, \ldots, x_{N}\right), B\right) \rightarrow\left(\left(\tilde{x}_{1}, \ldots, \tilde{x}_{N}\right), \tilde{B}\right) \text { yields }\left\{\tilde{x}_{i}, \tilde{x}_{j}\right\}=\tilde{P}_{i j} \tilde{x}_{i} \tilde{x}_{j}
$$

- The φ is a poisson map

$$
\left(i . e . \varphi^{*}\left(\left\{x_{i}, x_{j}\right\}\right)=\left\{\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\} \Longleftrightarrow P=\varphi(P)\right) \text { as } \varphi(B)=B
$$

Definition

Let P be Poisson tensor of rank $2 r$. Then φ is integrable if there exists
(1) $N-2 r$ Casimir functions \mathcal{C}_{k}, i.e. $\varphi^{*}\left(\mathcal{C}_{k}\right)=\mathcal{C}_{k}$ satisfying $\left\{\mathcal{C}_{k}, f(\mathbf{x})\right\}=0$ for all function $f(\mathbf{x})$
(2) r first integrals $h_{j}, j=1, \ldots, r\left(\varphi^{*}\left(h_{j}\right)=h_{j}\right)$ such that $\left\{h_{i}, h_{j}\right\}=0$

Presymplectic form

- In cluster algebras, there exists a skew-symmetric bilinear form, written in the log-canonical form

$$
\omega=\sum_{i<j} \frac{b_{i j}}{x_{i} x_{j}} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j}=\sum_{i<j} b_{i j} \mathrm{~d} \log x_{i} \wedge \mathrm{~d} \log x_{j}
$$

where $b_{i j}$ are entries of the exchange matrix B associated to the quiver Q

- It is compatible with cluster algebra i.e. $\mu_{k}:\left(\left(x_{1}, \ldots, x_{N}\right), B\right) \rightarrow\left(\left(\tilde{x}_{1}, \ldots, \tilde{x}_{N}\right), \tilde{B}\right)$ yields

$$
\tilde{\omega}=\sum_{i<j} \frac{\tilde{b}_{i j}}{\tilde{x}_{i} \tilde{x}_{j}} \mathrm{~d} \tilde{x}_{i} \wedge \mathrm{~d} \tilde{x}_{j}
$$

- The cluster map is symplectic $\varphi:\left(x_{1}, x_{2}, \ldots, x_{N}\right) \rightarrow\left(\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{N}\right)$ satisfies $\varphi^{*} \omega=\omega \circ \varphi\left(x_{1}, \ldots, x_{N}\right)=\omega$ as $\varphi(B)=B$.

Deformation of cluster mutation which preserves presymplectic form

- Restate the exchange relation as

$$
x_{k}^{\prime}=\mu_{k}\left(x_{k}\right)=\frac{f_{k}\left(M_{k}^{+}, M_{k}^{-}\right)}{x_{k}}, \quad \text { where } M_{k}^{ \pm}=\prod_{i} x_{i}^{\left[\pm b_{i k}\right]_{+}}
$$

Remark that if $f_{k}\left(M_{k}^{+}, M_{k}^{-}\right)=M_{k}^{+}+M_{k}^{-}$, the relation above returns to the original one.

- What is the condition for the function f_{k} in order for the map $\varphi=\rho^{-m} \mu_{i_{m}} \mu_{i_{m-1}} \cdots \mu_{i_{2}} \mu_{i_{1}}$ to be a symplectic map?

$$
\varphi^{*} \omega=\sum_{i<j}^{N} \frac{b_{i j}}{\tilde{x}_{i} \tilde{x}_{j}} \mathrm{~d} \tilde{x}_{i} \wedge \mathrm{~d} \tilde{x}_{j}=\sum_{i<j}^{N} \frac{b_{i j}}{x_{i} x_{j}} \mathrm{~d} x_{i} \wedge \mathrm{~d} x_{j}=\omega
$$

Deformation of cluster mutation which preserves presymplectic form

Theorem (Hone, Kouloukas)

Consider the cluster algebra with initial seed (\mathbf{x}, Q). Let $\varphi=\rho^{-m} \mu_{i_{m}} \mu_{i_{m-1}} \cdots \mu_{i_{2}} \mu_{i_{1}}$ such that $\varphi(Q)=Q$. Then φ is a symplectic map if and only if the smooth function $f_{k}: \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ satisfies

$$
f_{k}\left(M_{k}^{+}, M_{k}^{-}\right)=M_{k}^{+} g_{k}\left(\frac{M_{k}^{-}}{M_{k}^{+}}\right)
$$

for some differentiable function $g_{k}: \mathbb{F} \rightarrow \mathbb{F}$

Setting $g_{k}(x)=x+1 \Longrightarrow f_{k}\left(M_{k}^{+}, M_{k}^{-}\right)=M_{k}^{+}+M_{k}^{-}$.
Original cluster map is symplectic

Deformation of symplectic map of type A_{6}

The quiver corresponds to Dynkin type of A_{6},

- It is mutation periodic with period 6 i.e.

$$
\varphi:=\mu_{6} \mu_{5} \mu_{4} \mu_{3} \mu_{2} \mu_{1}(B)=B
$$

- With setting $g_{k}(x)=b x+a$ for $a, b \in \mathbb{R}$, the function $f\left(M_{k}^{+}, M_{k}^{-}\right)=b M_{k}^{-}+a M_{k}^{+}$, the map φ acting on the initial cluster variables $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ generates the following:

$$
\begin{aligned}
& \mu_{1}: x_{1} x_{1}^{\prime}=b_{1}+a_{1} x_{2} \\
& \mu_{n}: x_{n} x_{n}^{\prime}=b_{n}+a_{n} x_{n-1}^{\prime} x_{n+1} \quad 2 \leq n \leq 5 \\
& \mu_{6}: x_{6} x_{6}^{\prime}=b_{6}+a_{6} x_{5}^{\prime}
\end{aligned}
$$

Integrability of φ

- Consider the log-canonical Poisson bracket, $\left\{x_{i}, x_{j}\right\}=\left(B^{-1}\right)_{i j} x_{i} x_{j}$.
- Let $L_{i}=\left(\varphi^{*}\right)^{i}\left(x_{1}\right)$. If $b_{r}=1, a_{s}=1$ (for $1 \leq r \leq 6,2 \leq s \leq 5$), then φ is integrable as there exist 3 first integrals

$$
\begin{aligned}
& I_{1}=\sum_{j=0}^{8} L_{j}, \quad I_{2}=\prod_{j=0}^{8} L_{j} \\
& I_{3}=\sum_{j=0}^{8} L_{j} L_{j+1}\left(L_{j+2}+L_{j+4}+L_{j+6}\right)+\sum_{j=0}^{2} L_{j} L_{j+3} L_{j+6}
\end{aligned}
$$

which are in involution with respect to the Poisson bracket $\{\cdot, \cdot\}$.

- Question: Is the deformed integrable map φ still a cluster map?
- No because it produces $\frac{a_{1}^{2} x_{2} x_{3}+\left(x_{1}+x_{3}\right) a_{1}+x_{1} x_{2}}{x_{2}\left(a_{1} x_{2}+1\right)} \notin \mathbb{Z}\left[\mathbf{x}^{ \pm}\right]$
- Laurentification refers to a transformation that lifts the birational map to a new coordinate system where the map possesses the Laurent property.
- Note that this is not a unique procedure as several methods can Laurentify the birational map, e.g. recursive factorization and projectivization.
- The transformation can be guessed from the singularity confinement pattern, observed from singularity analysis. The pattern of singularities closely correlates with the transformation.

Singularity pattern

- Let $\mathbf{x}_{n}=\left(x_{1, n}, \ldots, x_{6, n}\right)$ be variables induced by the iteration of the map φ.
- The $\varphi: \mathbf{x}_{n} \rightarrow \mathbf{x}_{n+1}$ gives the variable, $x_{1, n+1}=\frac{1+a_{1} x_{2, n}}{x_{1, n}}$. It has singularity at $x_{1, n}=0$.
- Setting the initial values $x_{1,0}=\epsilon, x_{j, 0}=u_{j}$ for $j \in\{1, \ldots, 6\} \backslash\{1\}$, where $\epsilon \ll 1$ and u_{j} are regular values.
- $x_{1,0}=\epsilon\left(\sim 0^{1}\right) \underset{\varphi}{\rightarrow} \quad x_{1,1} \sim \epsilon^{-1}\left(\sim \infty^{1}\right) \quad \underset{\varphi}{\rightarrow} \quad x_{1,2}=\frac{u_{4} a_{1}-1}{u_{3}}(\sim R)$

$x_{1, n}$	0^{1}	∞^{1}	R	R
$x_{2, n}$	R	∞^{1}	R	R
$x_{3, n}$	R	∞^{1}	R	R
$x_{4, n}$	R	∞^{1}	R	R
$x_{5, n}$	R	∞^{1}	R	R
$x_{6, n}$	R	∞^{1}	0^{1}	R

$$
\begin{aligned}
x_{1, n} & =\frac{* \cdot \tau_{n+1}}{* \cdot \tau_{n}} \quad x_{2, n}=\frac{*}{* \cdot \tau_{n}} \\
\longrightarrow \quad x_{3, n} & =\frac{*}{* \cdot \tau_{n}} \quad x_{4, n}=\frac{*}{* \cdot \tau_{n}} \\
x_{5, n} & =\frac{*}{* \cdot \tau_{n}} \quad x_{6, n}=\frac{* \cdot \tau_{n-1}}{* \cdot \tau_{n}}
\end{aligned}
$$

Deformation of type A_{6} (Laurentification)

By singularity analysis, one could observe the pattern which lead us to define the map $\pi:\left(x_{1}, \ldots, x_{2 N}\right) \rightarrow\left(q_{2,0}, q_{1,0}, \tau_{-1}, \tau_{0}, \tau_{1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{6}, \sigma_{7}, p_{1,0}, p_{2,0}, a_{1}, a_{6}\right)$

$$
\begin{gathered}
x_{1, n}=\frac{\sigma_{n} \tau_{n+1}}{\sigma_{n+1} \tau_{n}} \quad x_{2, n}=\frac{p_{1, n}}{\sigma_{n+2} \tau_{n}} \quad x_{3, n}=\frac{p_{2, n}}{\sigma_{n+3} \tau_{n}} \quad x_{4, n}=\frac{q_{2, n}}{\sigma_{n+4} \tau_{n}} \\
x_{5, n}=\frac{q_{1, n}}{\sigma_{n+5} \tau_{n}} \quad x_{6, n}=\frac{\sigma_{n+7} \tau_{n-1}}{\sigma_{n+6} \tau_{n}}
\end{gathered}
$$

By setting the ($\left.\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}, \tilde{x}_{4}, \tilde{x}_{5}, \tilde{x}_{6}, \tilde{x}_{7}, \tilde{x}_{8}, \tilde{x}_{9}, \tilde{x}_{10}, \tilde{x}_{11}, \tilde{x}_{12}, \tilde{x}_{13}, \tilde{x}_{14}, \tilde{x}_{15}, \tilde{x}_{16}, \tilde{x}_{17}\right)=$ $\left(q_{2,0}, q_{1,0}, \tau_{-1}, \tau_{0}, \tau_{1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{6}, \sigma_{7}, p_{1,0}, p_{2,0}, a_{1}, a_{6}\right)$

$$
\begin{aligned}
\tilde{\omega} & =\pi^{*} \omega \\
& =\sum_{i<j} \frac{\tilde{b}_{i j}}{\tilde{x}_{i} \tilde{x}_{j}} \mathrm{~d} \tilde{x}_{i} \wedge \mathrm{~d} \tilde{x}_{j}
\end{aligned}
$$

Deformed quiver Q_{6}

Deformation of type A_{6} (Laurentification)

- The relations, which is given by $\varphi \circ \pi$, is equivalent to the exchange relations induced by $\mu_{3} \mu_{2} \mu_{115} \mu_{14} \mu_{6}\left(\tilde{\mathbf{x}}_{0}\right)$

Theorem

The sequence mutations in a cluster algebra of type A_{6} with including two frozen variables a_{1}, a_{6} generates the sequence of tau functions, $\left(\sigma_{n}\right),\left(p_{n}\right),\left(r_{n}\right),\left(w_{n}\right),\left(q_{n}\right),\left(\tau_{n}\right)$, which are elements of the Laurent polynomial ring $\mathbb{Z}_{>0}\left[a_{1}, a_{6}, \sigma_{0}^{ \pm}, \sigma_{1}^{ \pm}, \sigma_{2}^{ \pm}, \sigma_{3}^{ \pm}, \sigma_{4}^{ \pm}, \sigma_{5}^{ \pm}, \sigma_{6}^{ \pm}, \sigma_{7}^{ \pm}, \tau_{-1}^{ \pm}, \tau_{0}^{ \pm}, \tau_{1}^{ \pm}, p_{0}^{ \pm}, r_{0}^{ \pm}, w_{0}^{ \pm}, q_{0}^{ \pm}\right]$.

What is the difference between type A_{4} and type A_{6} ?

Deformed quiver $\tilde{Q}_{A_{4}}$

Deformed quiver $\tilde{Q}_{A_{6}}$

Figure 1: Local expansion on the four cycle

Alternative form of $\tilde{Q}_{A_{6}}$

Figure 2: Alternative form of $\tilde{Q}_{A_{6}}$

Local expansion of the deformed quiver

- Each node in the deformed quiver Q_{4} corresponds to tau-functions

$$
(1,2,3,4,5,6,7,8,9,10,11,12,13)=\left(q_{1,0}, \tau_{-1}, \tau_{0}, \tau_{1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, p_{1,0}, a_{1}, a_{4}\right)
$$

- By the local expansion above, the deformed quiver Q_{6} has vertices corresponding to $\left(q_{2,0}, q_{1,0}, \tau_{-1}, \tau_{0}, \tau_{1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{6}, \sigma_{7}, p_{1,0}, p_{2,0}, a_{1}, a_{6}\right)$
- The extension from the deformed quiver of type A_{4} to A_{6}, suggests that the map

$$
\begin{aligned}
\pi:\left(x_{1}, \ldots, x_{2 N}\right) & \rightarrow\left(q_{N-1,0}, \ldots, q_{1,0}, \tau_{-1}, \tau_{0}, \tau_{1}, \sigma_{0}, \ldots, \sigma_{2 N}, p_{1,0}, \ldots, p_{N-1},\right. \\
& x_{1}=\frac{\sigma_{0} \tau_{1}}{\sigma_{1} \tau_{0}} \quad x_{2}=\frac{p_{0}}{\sigma_{2} \tau_{0}} \quad x_{3}=\frac{p_{1}}{\sigma_{3} \tau_{0}}, \ldots, x_{N}=\frac{p_{N-2}}{\sigma_{N} \tau_{0}}, \\
& x_{N+1}=\frac{q_{N-2}}{\sigma_{N+1} \tau_{0}}, \ldots, x_{2 N-1}=\frac{q_{0}}{\sigma_{2 N-1} \tau_{0}} \quad x_{2 N}=\frac{\sigma_{2 N+1} \tau_{-1}}{\sigma_{2 N} \tau_{0}}
\end{aligned}
$$

Deformed quiver $Q_{2 N}\left(\right.$ type $\left.A_{2 N}\right)$

Let $\tilde{\mu}=\mu_{N-1} \mu_{N-2} \cdots \mu_{2} \mu_{1} \mu_{4 N+3} \mu_{4 N+2} \cdots \mu_{3 N+6} \mu_{3 N+5}$. Then the sequence of mutations $\mu_{N} \tilde{\mu} \mu_{N+3}$ is equivalent to cyclic permutation of $2 N+5$ nodes, which corresponds to tau-functions τ and σ.

$$
\mu_{N} \tilde{\mu} \mu_{N+3}(Q)=\rho(Q)
$$

Subsequent mutation $\mu_{N+1} \tilde{\mu} \mu_{N+4}$ will give similar result. Applying the $2 N+3$ of these blocks of the mutations,

$$
\hat{\mu}(Q)=Q
$$

where $\hat{\mu}=\mu_{3 N+4} \tilde{\mu} \mu_{N+2} \mu_{3 N+3} \tilde{\mu} \mu_{N+1} \mu_{3 N+2} \tilde{\mu} \mu_{N} \mu_{3 N+1} \tilde{\mu} \mu_{3 N+4} \cdots \mu_{N} \tilde{\mu} \mu_{N+3}$

Deformation of symplectic map of type $A_{2 N}$

The birational map (cluster map) $\varphi=\mu_{2 N} \cdots \mu_{1}$ associated to type $A_{2 N}$, which is equivalent to

$$
\begin{aligned}
& \mu_{1}: x_{1} x_{1}^{\prime}=1+a_{1} x_{2} \\
& \mu_{n}: x_{n} x_{n}^{\prime}=1+x_{n-1}^{\prime} x_{n+1} \quad 2 \leq n \leq 2 N-1 \\
& \mu_{2 N}: x_{2 N} x_{2 N-1}^{\prime}=1+a_{2 N} x_{5}^{\prime},
\end{aligned}
$$

can be Laurentified to the cluster map $\varphi \pi$ on the space of tau-functions, that is, the generated variables are in the Laurent polynomial ring $\mathbb{Z}_{>0}\left[a_{1}, a_{2 N}, \sigma^{ \pm}, p^{ \pm}, q^{ \pm}\right]$

Future direction

- Deformation of cluster map of type $A_{2 N+1}$.
- Generalizing deformation of the cluster map of type B and D.(Up to so far we have successfully Laurentified the deformations of type B_{2}, B_{3} and D_{4})
- Potential relations between deformed integrable cluster map and other integrable map (We have found that deformed particular type B3 and D4 maps are closely related to a particular solution of Somos-7 recurrences)
- Investigating symmetries in deformed exchange matrix type $A_{2 N}$

Thank you for your attention!

