Neutralizing antibody levels to human papillomavirus following biand quadrivalent vaccination

Filipe C. Mariz Tumorvirus-specific Vaccination Strategies (F035) Deutsches Krebsforschungszentrum (DKFZ)

bi- and quadrivalent HPV prophylactic vaccines

Modified from Schiller & Müller., (2015) Lancet Oncol 16(5)

bi- and quadrivalent HPV prophylactic vaccines

bi- and quadrivalent HPV vaccines confer:

- Strong type-specific humoral responses;
- Different cross-reactive responses mainly against alpha-9 HPV types (HPV31/33/52/58), and alpha-7 HPV45.

Modified from Schiller & Müller., (2015) Lancet Oncol 16(5)

Neutralizing antibodies (nAb) as predictor of protection against HPV-related cancers

Pre-clinical animal models support the role of anti-L1 nAb responses in protection against experimental HPV infection and related lesions;

Vaccine correlates of protection:

- Prevention against pre-malignant lesions
- Prevention against persistent infection (>6-months)
- Neutralizing antibodies, unknown protective levels

How sustainable and cross-reactive are the vaccineinduced Ab levels?

Study design and rationale

Mariz et al., (2020) npj Vaccines 5(14); Mariz et al., (in-press) Lancet Infect Dis

Peak-antibody levels cross-neutralize phylogenetically related non-vaccine types

Vaccine-induced neutralizing and cross-neutralizing antibody levels are sustainable for up to 12 years

Vaccine-induced cross-neutralizing antibody seroprevalence is sustained for 12 years

	Bivalent vaccine			Quadrivalent vaccine	Quadrivalent vaccine				
	Seroprevalence (95% CI)	Median titre (95% CI)	GMT (95% CI)	Seroprevalence (95% CI)	Median titre (95% CI)	GMT (95% CI)			
HPV31									
2–4 years	90.0 (73.4-97.8)	183 (73–290)	205 (134-313)	65.5 (45.6-82.0)	53 (25-93)	102 (66–157)			
5–7 years	80.7 (70.2-88.8)	129 (62–192)	189 (144-249)	45·7 (34·7-57·0)	<40	114 (77-169)			
8–10 years	85.3 (78.4-90.6)	117 (93–138)	179 (149-216)	46.3 (37.7-55.0)	<40	120 (90–160)			
11–12 years	83.5 (74.2-90.4)	97 (63-128)	147 (117–185)	53.8 (43.0-64.3)	44 (25-53)	121 (87-168)			
5–12 years	→ 83·6 (79·0–88·3)	110 (92–133)	171 (151–195)	48.4 (42.7-54.1)	<40	119 (98–143)			

Similar findings for non-vaccine HPV types 33, 52 and 58

Modified from Mariz et al., (2021) Lancet Infect Dis S1473-3099(20)30873-2.

Vaccine-induced cross-neutralizing antibody seroprevalence is sustained for 12 years

	Bivalent vaccine			Quadrivalent vaccine	Quadrivalent vaccine				
	Seroprevalence (95% CI)	Median titre (95% CI)	GMT (95% CI)	Seroprevalence (95% CI)	Median titre (95% CI)	GMT (95% CI)			
HPV31									
2–4 years	90.0 (73.4-97.8)	183 (73–290)	205 (134-313)	65.5 (45.6-82.0)	53 (25-93)	102 (66–157)			
5–7 years	80.7 (70.2-88.8)	129 (62–192)	189 (144-249)	45.7 (34.7-57.0)	<40	114 (77–169)			
8–10 years	85.3 (78.4-90.6)	117 (93–138)	179 (149-216)	46.3 (37.7-55.0)	<40	120 (90–160)			
11–12 years	83.5 (74.2-90.4)	97 (63-128)	147 (117–185)	53.8 (43.0-64.3)	44 (25-53)	121 (87–168)			
5–12 years	→ 83·6 (79·0–88·3)	110 (92–133)	171 (151–195)	48.4 (42.7-54.1)	<40	119 (98–143)			
1101/00									

Similar findings for non-vaccine HPV types 33, 52 and 58

HPV45						
2-4 years	46.6 (28.3-65.6)	<40	124 (80-192)	10.3 (2.1-27.3)	<40	53 (25–112)
5–7 years	48.7 (37.2-60.3)	<40	88 (72–108)	13.2 (6.8–22.4)	<40	97 (53–175)
8–10 years	46.1 (37.7-54.6)	<40	79 (68–92)	13.9 (8.6–20.9)	<40	89 (62–129)
11–12 years	40.6 (30.4-51.4)	<40	74 (60-90)	18.6 (11.2-28.2)	<40	117 (64–216)
5–12 years	→ 45.1 (39.5-50.9)	<40	80 (72-88)	15.1 (11.3-19.6)	<40	101 (76–133)

Modified from Mariz et al., (2021) Lancet Infect Dis S1473-3099(20)30873-2.

Outlook #1

- In the general, HIV-uninfected population:
 - bi- and quadrivalent HPV vaccines induce sustainable nAb levels to vaccine HPV types for up to 12-years;
 - nAb levels to non-vaccine types HPV31/33/45/52/58 are, when measurable, as sustainable as nAb to vaccine HPV types;
 - nAb seroprevalence rates to HPV types 16, 18, 31, 33, 52 and 58 significantly correlated with reported VE against persistent infections (not shown).

How sustainable and cross-reactive are the vaccineinduced Ab levels in people living with HIV?

Peak-neutralizing antibody levels at Month-7 are induced in HIV+ patients following vaccination

Toft et al 2014 reported on a randomized, double-bind study conducted with **adults living with HIV**, recipients or not of ART

Toft et al., (2014) JID 209:1165-73.

Vaccine-induced cross-reactivity is more restricted in HIVinfected subjects

HPV type	Baseline seroprevalence %			Seroconversion total%		Seroconversion Gardasil [™] %			Seroconversion Cervarix [™] %			
	Male	Female	Total	Male	Female	Total	Male	Female	Total	Male	Female	Total
6	42	32	38	80	69	75#	100	90	95 🔶	0	0	0
11	27	32	29	84	85	84#	100	100	100 🔶	0	0	0
16	38	33	36	100	95	98	100	90	96	100	100	100 🗲
18	28	27	27	86	86	86*	71	78	73 🗲	100	92	97 🗲
31	28	30	29	34	50	39	24	44	29	47	55	50 🗲
33	17	30	21	18	35	23	17	22	18	18	45	27
45	22	17	20	19	8	15	24	8	18	13	8	11

(B) Antibodies detected with neutralization assays

Modified from Faust et al., (2016) Vaccine 34:1559-65.

Vaccine-induced neutralizing antibody responses are sustained for 4 years in HIV+ patients

 Seroprevalence rates 4-years post-vaccination:

 3-doses: 86-93% for HPV types 6, 11 and 16; 64% for HPV18

 4-doses: >95% for HPV types 6, 11 and 16; 75% for HPV18

Modified from Levin et al., (2017) Vaccine 35(13):1712-20.

Outlook #2

- In the people living with HIV:
 - bi- and quadrivalent HPV vaccines induce high rates of seroconversion;
 - Vaccine-induced **cross-reactivity** is **diminished**, as compared to the general, HIV-uninfected population;
 - Vaccine-induced nAb responses are sustained for 4 years;
 - Amplitude and sustainability of vaccine-induced nAb levels also depend on HIV RNA load and CD4 counts at first dose (Moscicki et al 2019 Clin Infec Dis; Cespedes et al 2018, Papillomavirus Res)
 - estimation of VE in adults living with HIV is challenging due to the seropositivity rates at baseline.

Acknowledgments

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

Research for a Life without Cancer

F020/F035 Michael Pawlita Martin Müller Tim Waterboer Noemi Bender Kristina M. Prager

EMBL-DKFZ Chemical Biology Core Facility Peter Sehr

Karolinska Institutet

Matti Lehtinen Tiina Eriksson Hanna Kahn

International Agency for Research on Cancer

Partha Basu Rengaswamy Sankaranarayanan Penelope Gray UNIVERSITY OF HELSINKI Jorma Paavonen

Devasena Anantharaman Madhavan Radhakrisna Pillai Priya R. Prabhu

Funded by

Cancer Foundation Finland

