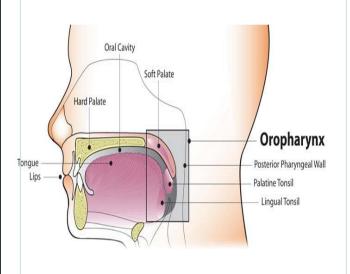
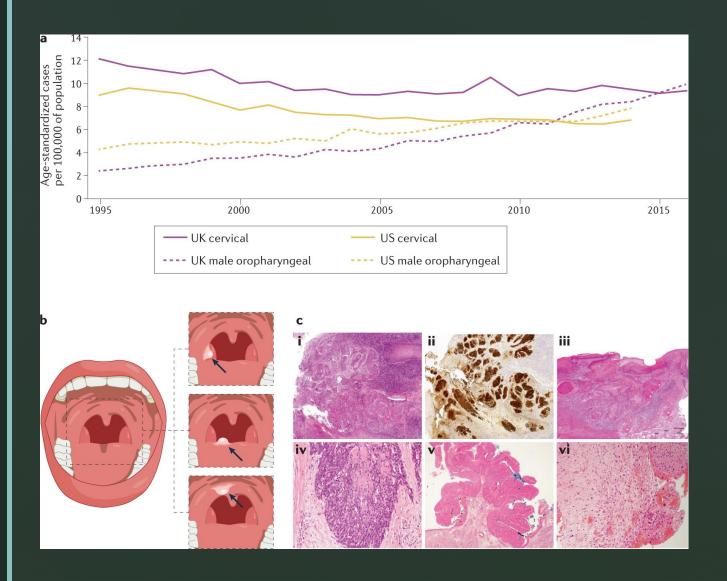
Disease burden, screening and treatment of head and neck cancers in Poland

MD PhD Tomasz Szafarowski,

Asisstant Professor

Otolaryngology Clinic, Faculty of Medicine and Dentistry, Medical Universisty of Warsaw


Head and Neck Cancer Risk Factors



OPSCC has historically been linked to alcohol and tobacco

HPV-associated oropharyngeal cancer

- Oropharyngeal squamous cell carcinoma (OPSCC) comprises cancers of the tonsils, base of tongue, soft palate and uvula
- The incidence of human papillomavirus-positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) is rising rapidly
- Tonsillar complex and the base of the tongue comprise 96% of oropharyngeal tumours

HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management, Matt Lechner<u>Nature Reviews Clinical Oncology</u> volume 19, pages 306–327 (2022)

HNSC statistics in Poland

Polish National Cancer Registry

Laryngeal Cancer Stat Facts

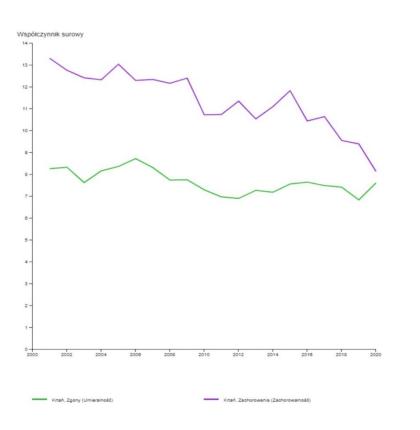
Zachorowania/Zgony

Trendy czasowe

Grupuj według Kod nowotworu, Rok

Metryki Zgony (Umieralność), Zachorowania (Zachorowalność)

Statystyka Współczynnik surowy


 Płeć
 Mężczyźni

 Nowotwory
 Krtań

 Region
 Polska

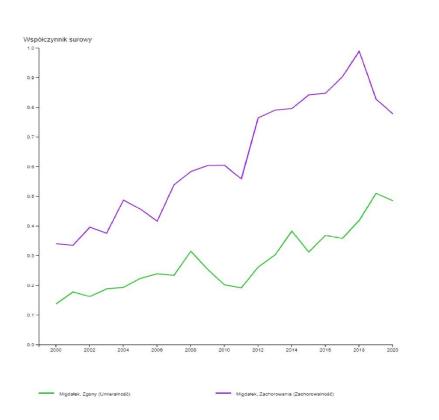
 Grupy wiekowe
 0 do 89

 Przedział czasowy
 2000 do 2020

Tonsils Cancer Incidence - Women

Zachorowania/Zgony

Trendy czasowe



Grupuj według Kod nowotworu, Rok Metryki

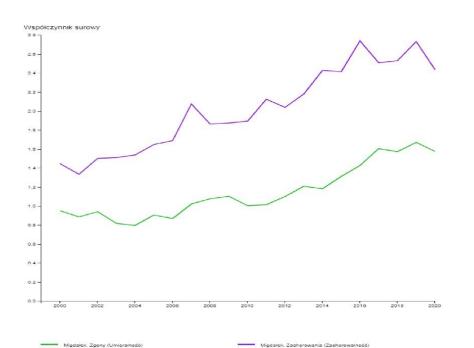
Zgony (Umieralność), Zachorowania (Zachorowalność) Statystyka

Współczynnik surowy

Kobiety Nowotwory Migdałek 0 do 89 Grupy wiekowe Przedział czasowy 1963 do 2020

Tonsils Cancer Incidence - Men

Zachorowania/Zgony Trendy czasowe



Grupuj według Kod nowotworu, Rok

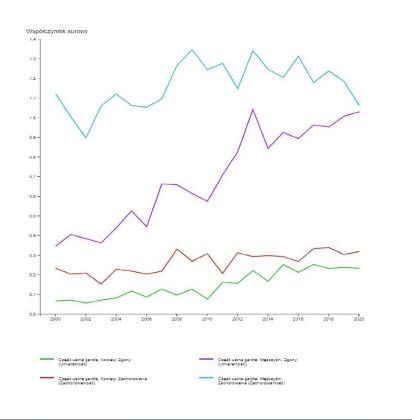
Zgony (Umieralność), Zachorowania (Zachorowalność) Współczynnik surowy

Statystyka Płeć

Mężczyźni Nowotwory Migdałek Grupy wiekowe Przedział czasowy 1963 do 2020

Oropharyngeal Cancer Incidence

Zachorowania/Zgony


Trendy czasowe

Grupuj według Kod nowotworu, Rok Metryki Zgony (Umieralność).

Metryki Zgony (Umieralność), Zachorowania (Zachorowalność)

Statystyka Współczynnik surowy Pleć Mężczyźni, Kobiety Nowotwory Część ustna gardła Grupy wiekowe 0 do 89 Przedział czasowy 1963 do 2020

HPV - related oropharyngeal cancers

- 60% in Republic of Korea,
- 51% in North America,
- 50% in Eastern Europe,
- 46% in Japan,
- 42% in North-Western Europe,
- 41% in Australia/New Zealand, 24% in South Europe,
 23% in China, 22% in India, and 13%

Table 37: Studies on HPV prevalence among cases of oropharyngeal cancer in Poland

			HPV	Prevalence			
Study	HPV detection method and targeted HPV types	No. Tested	%	(95% CI) ^a	Prevalence of 5 most frequent HPVs, HPV type (%)		
MEN							
No data available		-	-	-	-		
WOMEN							
No data available		-	-	-	-		
BOTH OR UNSPECIFI	ED						
Ribeiro 2011	PGMY09/11 (L1) Amplification with TS primers (16)	136	0.7	(0.1-4.0)	HPV 16 (0.7)		
Snietura 2010	Real-time High Risk HPV test (Abbott Molecular) using L1 consensus primers Amplification with TS primers (16. 18. 31. 33. 35. 39. 45. 51. 52. 56. 58. 59. 66 and 68 - the technique only differentiates 16-18-other)	14	50.0	(26.8-73.2)	HPV 16 (50.0)		
Szkaradkiewicz 2002	MY09/MY11 (L1) Amplification with TS primers (16. 18)	28	10.7	(3.7-27.2)	-		

Data updated on 9 May 2016 (data as of 31 Dec 2015)

DBH: Dot Blot Hybridization; EIA: Enzyme ImmunoAssay; HC2: Hybrid Capture 2; ISH: In Situ Hybridization; LBA: Line-Blot Assay; LiPA: Line Probe Assay; PCR: Polymerase Chain Reaction; RFLP: Restriction Fragment Length Polymorphism; RLBH: Reverse Line Blot Hybridization; RT-PCR: Real Time Polymerase Chain Reaction; SBH: Southern Blot Hybridization; SPF: Short Primer Fragment; TS: Type Specific

Only for European countries

Data Sources

Ribeiro KB, Int J Epidemiol 2011; 40: 489 | Snietura M, Pol J Pathol 2010; 61: 133 | Szkaradkiewicz A, Clin Exp Med 2002; 2: 137

Based on systematic reviews and meta-analysis performed by ICO. Reference publications: 1) Ndiaye C, Lancet Oncol 2014; 15: 1319 2) Kreimer AR, Cancer Epidemiol Biomarkers Prev 2005; 14: 467

a 95% Confidence Interval

Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

Volume 133, Issue 6, June 2022, Pages 698-705

Original Article

Prognostic value of human papillomavirus detection and the eighth edition of the TNM classification staging system in oropharyngeal squamous cell carcinoma: A single-center Polish study

• 110 OPSCC cases

70.9% of cases, with HPV16 being the most prevalent genotype (96.2%)

Palatine tonsils were the most prevalent tumor site, constituting over 80% of cases

International Epidemiologic Study of Worlwide

Distribution of Type-specific Human Papillomaviruses

HPV (DNA) in invasive Head and neck Cancers

Catalan Institute of Oncology,

Barcelona, Spain

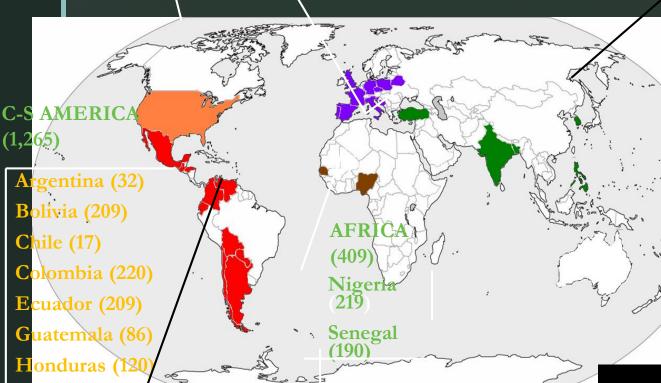
"HPV Involvement in Head and Neck Cancers: Comprehensive Assessment of Biomarkers in 3680 Patients" Xavier Castellsague, Laia Alemany, Miquel Quer et al. J. Natl Cancer Inst 2016

EUROPE (2,291)

Belarus (72) Spain (731) France (60) Poland (244) ASIA **(462)**

Bosnia-Hz (82) UK (321) Germany (264) Portugal (48)

Czech R (163) Slovenia (156) Italy (150)


Bangladesh (94)

India (108)

Korea S (14

Philippines (61)

Turkey (51)

Mexico (197)

Paraguay (156)

Venezuela (19)

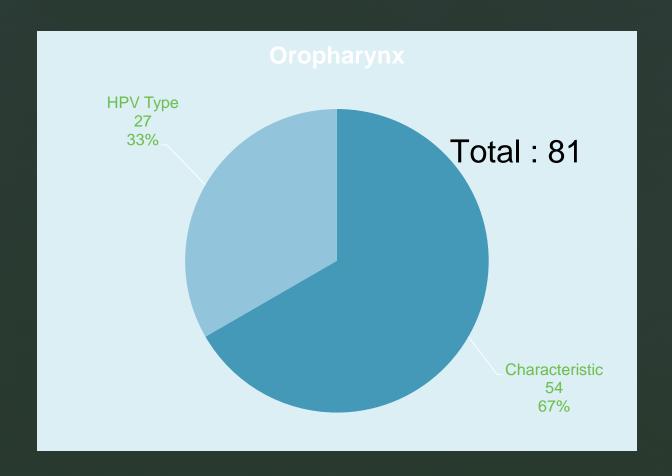
CASES FROM 29 COUNTRIES

() Total CASES

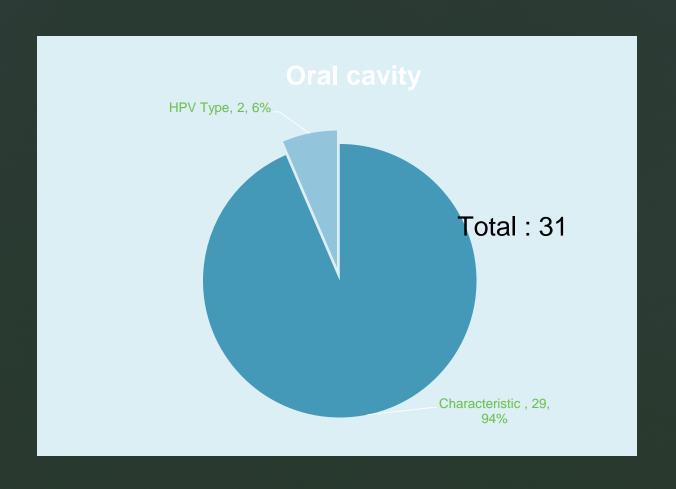
RECEIVED: 4,53

Methods

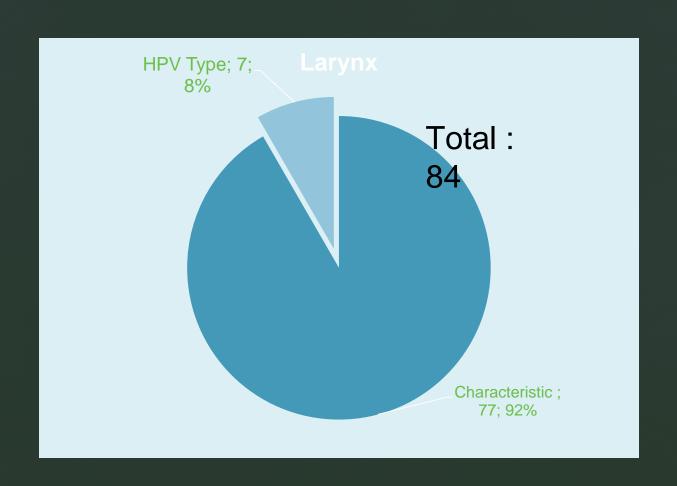
- histopathological evaluation
- DNA quality control, and detection.DNA/HPV SPF-10 PCR/DEIA/LiPA₂₅
- Additional markers indicating transforming activity E6*I mRNA, p16^{INK4a}

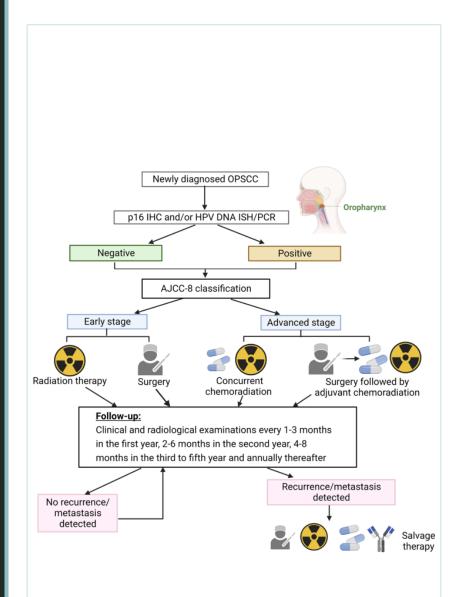

RESULTS

Characteristic	Oral cavity		Oropharynx N=81		Nasopharynx N=7		Hypopharynx N=7		Larynx		
N=210		N=31							N	=84	
Age at diagnosis (y	/ears)										
Mea	n (SD)	59.1	(10.8)	61.8	(11.0)	57.6	(8.0)	54.1	(5.2)	59.6	(11.5)
Mi	in-Max	33-78		26-90		45-67		45-60		7-80	
Gender											
	Male	21	(67.7%)	58	(71.6%)	5	(71.4%)	6	(85.7%)	75	(89.3%)
F	emale	10	(32.3%)	23	(28.4%)	2	(28.6%)	1	(14.3%)	9	(10.7%)
Time at diagnosis											
20	000-09	15	(48.4%)	41	(50.6%)	5	(71.4%)	2	(28.6%)	37	(44.0%)
20	010-12	16	(51.6%)	40	(49.4%)	2	(28.6%)	5	(71.4%)	47	(56.0%)
Histological diagno	sis										
	SCC	31	(100.0%)	79	(97.5%)	7	(100.0%)	6	(85.7%)	84	(100.0%)
	Other*	0	(0.0%)	2	(2.5%)	0	(0.0%)	1	(14.3%)	0	(0.0%)


*Two neuroendocrine tumours (1 oropharyngeal and 1 hypopharyngeal) and one adenosquamous cell carcinoma (1 oropharyngeal cancer)

HPV + Type N=38			Oral cavity		Oropharynx		Nasopharynx		Hypopharynx		Larynx		
		N=2		N=27		N=1		N=1		N=7			
			N DNA pos	N p16 or mRNA pos	N DNA	N p16 or mRNA pos	N DNA	N p16 or mRNA pos	N DNA	N p16 or mRNA pos	N DNA		o16 or NA pos
HPV16 35			1	1	27	27	1	0	1	1	5		3
HPV18 1			-	-	-	-	_	-	-	_	1		1
HPV45 1			-	_	-	-	_	_	_	_	1		1
HPVX 1			1	0	-	-	-	-	-	-	-		-


RESULTS - OROPHARYNX



RESULTS – ORAL CAVITY

RESULTS - LARYNX

Early stage disease -

 has largely been replaced by less-invasive techniques

- transoral laser microsurgery (TLMS)
 - transoral robotic surgery (TORS)

Treatment

 Improved prognosis and greater prevalence in younger individuals, numerous ongoing trials are examining the potential for treatment de-intensification

■ The substantially better prognosis of patients with HPV+ OPSCC compared to those with HPV- OPSCC has been recognized in the American Joint Committee on Cancer TNM8 staging guidelines, which recommend stratification by HPV status to improve staging.

Treatment Future

- standard treatment is associated with high toxicities and compromised quality-of-life
- de-escalating treatment for these patients
- recently completed clinical trials to de-intensify chemoradiation in unselected populations failed to demonstrate non-inferiority
- Emergence of immunotherapies (only anti-PD-1/PD-L1 antibodies have been approved for clinical use)

The incidence of human papillomavirus-associated oropharyngeal cancer (HPV+ OPSCC) is expected to continue to rise over the coming decades until the benefits of gender-neutral prophylactic HPV vaccination begin to become manifest.

Thank you for your attention.