Performance and effectiveness of screeningtriage strategies for cervical precancer among women living with HIV

Helen Kelly

National Cancer Institute, USA &

London School of Hygiene and Tropical Medicine, United Kingdom

Invasive Cervical Cancer incidence

HIV prevalence

1.5+ %	0.4 - 1.5 %	0.2 - 0.4 %
< 0.2 %	No data	

ICC=AIDS defining cancer

15.6 million WLHIV globally**12.5 million** WLHIV in SSA

Associations HPV, HIV and Cervical Cancer

- HPV is a risk factor for HIV acquisition (x2)⁽¹⁾
- HIV \uparrow HPV incidence (x2) and \downarrow HPV clearance ⁽¹⁾
- The multiple HR infection & broader range ⁽²⁾
- HIV \uparrow cervical cancer (x6) ⁽³⁾

- Effect ART complex
- Increasing longevity on ART vs. increasing cumulative incidence => NEED
- Population attending specialist services => OPPORTUNITY

Antiretroviral therapy and cervical HPV & ICC

RISK of all outcomes LOWER if:

↑ x2 Regression

- Started early (higher nadir CD4)
- Prolonged ART duration, good adherence & effective treatment (sustained viral suppression and increasing CD4)

Universal ART (UNAIDS 95-95-95) era:

Is risk of cervical precancer and ICC among WLHIV = risk among HIV negative women?

WHO recommendations for screening WLHIV

WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention, second edition. Geneva: World Health Organization; 2021

Diagnostic accuracy of screening-triage strategies

Primary objective

To evaluate the **diagnostic accuracy** of screening and screening-triage strategies for **CIN2+/CIN3+** among **women living with HIV (WLHIV)**

Methods

Systematic review and meta-analysis

Results

35 studies, N=17,744 WLHIV

VIA = 14 studies Cytology = 20 studies HPV-DNA = 25 studies

	N (%)							
Study design								
Cross-sectional	27 (77%)							
Prospective cohort	6 (17%)							
Randomised controlled trial	2 (6%)							
Region								
Sub-Saharan Africa	19 (54%)							
Asia	8 (23%)							
Latin America	2 (6%)							
North America	3 (9%)							
Europe	3 (9%)							
Enrolment period								
Pre-combination ART (pre-1996)	3 (9%)							
Early ART (1996-2008)	8 (23%)							
Recent ART (2009-2015)	17 (49%)							
Universal ART (post-2015)	5 (14%)							
Not reported	2 (6%)							
	074 500 11 / 1							
Median CD4+ count (range)	271 – 592 cells/µl							
Taking ART, %	71%							
Median Age (range)	30 - 46 years							
CIN2+ pooled prevalence, %	47%							
CIN3+ pooled prevalence, % (IQR)	9%							

Diagnostic accuracy of VIA for CIN2+/CIN3+

- **14 studies** in 7,434 WLHIV
- VIA abnormal ranged from 6% to 56%
- Variable sensitivity (44 to 78%) & specificity (47 to 97%)

Studyld	Country	Biopsy				S	Sensitivity (95% CI)					Specificity (95% CI)
Chibwesha, 2016	Zambia	All women			<u> </u>	(0.632 (0.384, 0.837)			-	•	0.905 (0.852, 0.944)
Chung, 2013	Kenya	All women			•	C	0.702 (0.551, 0.827)		-	•		0.626 (0.578, 0.673)
Mabeya, 2012	Kenya	All women				• (0.846 (0.651, 0.956)		-			0.508 (0.417, 0.599)
Kelly, 2021 (SA)	South Africa	Colpo-directed + random (screen+))		-	C	0.538 (0.395, 0.678)			•		0.744 (0.705, 0.781)
Kelly, 2021 (BF)	Burkina Faso	Colpo-directed + random (screen+))		•	C	0.692 (0.386, 0.909)			٠		0.804 (0.768, 0.836)
Boddu, 2021	India	Colpo-directed + random (screen+))		-•	- (0.778 (0.400, 0.972)			-		0.723 (0.651, 0.788)
Kuhn, 2010	South Africa	Colpo-directed + ECC (all women)		•		C	0.583 (0.277, 0.848)					0.703 (0.648, 0.754)
Firnhaber, 2012	South Africa	Colpo-directed (screen+)		_	•	C	0.686 (0.587, 0.775)		•	•		0.623 (0.594, 0.652)
Ndizeye, 2019	Burundi	Colpo-directed (all women)			•	. (0.750 (0.428, 0.945)				•	0.957 (0.938, 0.971)
Joshi, 2013	India	Colpo-directed (all women)				(0.821 (0.665, 0.925)			•		0.874 (0.853, 0.893)
Sahasrabuddhe, 2012	? India	Colpo-directed (all women)				• 1	.000 (0.735, 1.000)			+		0.782 (0.728, 0.829)
		Г	Т	1	1	٦	Г	1		-1	٦	
		0	.25	.5	.75	1	0	.25	.5	.75	1	
			Se	ensitivi	ty			Sp	ecifici	ty		

Diagnostic accuracy of VIA for CIN2+/CIN3+

Biopsy indication + histological verification of disease :

- all women underwent colposcopy → colposcopy directed biopsy <u>and random</u> biopsy of colposcopy normal women.
- 2. screen-positive women (at minimum HR-HPV) → biopsy
- 3. VIA+ \rightarrow colposcopy abnormal women \rightarrow biopsy

Sensitivity lower in studies with low risk of disease misclassification (pooled sensitivity: 56% vs. 84%)

	Sensitivity	 ²	Specificity	 ²
	for CIN2+		for <cin2< th=""><th></th></cin2<>	
	(%, 95%Cl)		(%, 95%Cl)	
Screen approach		_		
VIA – naked eyea				
Studies with ≥95% histology verification ^(44, 61, 62, 67, 70)	56.0 (45.4-66.1)	64.9%	73.8 (59.8-84.2)	94.4%
Studies with 50-95% histology verification ^(36, 44, 59, 64)	65.1 (52.1-76.1)	58.5%	68.3 (55.6-78.8)	94.7%
Studies with <50% histology verification ^(50, 65, 66, 68)	83.7 (77.1-88.7)	10.0%	87.8 (75.0-90.5)	97.1%

Diagnostic accuracy of cervical cytology

- 20 studies in 9,802 WLHIV
- Sensitivity and specificity estimates variable for CIN2+/CIN3+
- In settings enrolled in External Quality Assessment sensitivity HSIL+ for CIN3+=87.5% (95%CI: 76.0-94.0), specificity=78.8% (95%CI: 70.2-85.4).

studyid	Country	Sensitivity (S	95% CI)		Specificity (95% CI)
ASCUS+					
Luckett, 2019	Botswana	0.647 (0.383	8, 0.858)	-	0.893 (0.850, 0.927)
Joshi, 2013	India	0.724 (0.528	8, 0.873)	•	0.936 (0.920, 0.950)
Ndizeye, 2019	Burundi	0.727 (0.390	, 0.940)	+	0.852 (0.822, 0.878)
Mabeya, 2012	Kenya	0.727 (0.498	3, 0.893)		0.619 (0.523, 0.709)
Segondy, 2016 (BF)	Burkina Faso	0.727 (0.390	, 0.940)		0.752 (0.713, 0.789)
Maiman, 1998	USA	0.800 (0.444	, 0.975)		0.697 (0.635, 0.755)
Sahasrabuddhe, 2012	India	0.900 (0.555	, 0.997)		0.585 (0.520, 0.648)
Chung, 2013	Kenya		, 0.987)		0.429 (0.381, 0.479)
Firnhaber, 2012	South Africa	- 1.000 0.964	1.000)	+	0.294 (0.267, 0.322)
Bateman, 2015	Zambia	1.000 (0.894	. 1.000)		0.119 (0.082, 0.163)
Secondy 2016 (SA)	South Africa	- 1 000 (0 932	1 000)		0.073 (0.052, 0.099)
Summary		0.898 (0.803	3, 0.950)	\sim	0.594 (0.407, 0.757)
LSIL+					
Joshi, 2013	India	0.586 (0.389	0, 0.765)	•	0.952 (0.938, 0.965)
Ndizeye, 2019	Burundi	0.636 (0.308	8, 0.891)	+	0.877 (0.849, 0.902)
Mabeva, 2012	Kenva	0.682 (0.451	. 0.861)		0.664 (0.569, 0.750)
Segondy, 2016 (BF)	Burkina Faso	0.727 (0.390	0.940)	-+-	0.785 (0.747, 0.820)
Chung, 2013	Kenva		0.965)		0.595 (0.546, 0.643)
Sahasrabuddhe, 2012	India	0.900 (0.555	5.0.997)		0.631 (0.566, 0.692)
Segondy, 2016 (SA)	South Africa		. 0.995) +		0.108 (0.082, 0.138)
Bateman 2015	Zambia		2 () 999)		0.333 (0.277, 0.393)
Firnhaber 2012	South Africa	- 1 000 (0.964	1,000)		0.323 (0.295, 0.351)
Summary	ooddir / linou	0.857 (0.734	, 0.928)	\sim	0.667 (0.484, 0.811)
HSIL+					
Mabeya, 2012	Kenya -	• 0.273 (0.107	, 0.502)		0.894 (0.822, 0.944)
Joshi, 2013	India	0.345 (0.179	0, 0.543)	>	0.991 (0.984, 0.996)
Maiman, 1998	USA	• 0.400 (0.122	2, 0.738)	-	0.933 (0.893, 0.961)
Segondy, 2016 (BF)	Burkina Faso	0.455 (0.167	. 0.766)	•	0.964 (0.944, 0.978)
Ndizeve, 2019	Burundi	0.455 (0.167	. 0.766)	•	0.961 (0.942, 0.974)
Luckett, 2019	Botswana	0.471 (0.230	0.722)	3	0.982 (0.958, 0.994)
Kremer, 2019	South Africa	0.593 (0.457	(0.719)	–	0.916 (0.872, 0.949)
Sahasrabuddhe 2012	India		0.878)	-+	0.950 (0.915, 0.974)
Bateman 2015	Zambia		0 796)	_ _	0.567 (0.505, 0.627)
Segondy, 2016 (SA)	South Africa	- 0.808 (0.40	0 904)		0.750 (0.711 0.788)
Chung 2013	Kenva		, 0.00 4)	·	0.871 (0.834 0.902)
Firnhaber 2012	South Africa		, 0.000)	• ·	0.723 (0.696, 0.750)
Summary	Codul Allica	0.507 (0.003	, 0.00 4)	· · ~	0.028 (0.850, 0.750)
Summary		0.592 (0.416	5, 0.745)	\sim	0.928 (0.659, 0.965)
	0		0		יי 1
		Sensitivity (95% CI)		Specificity (95% CI)	

CIN3+ detection

Diagnostic accuracy of HPV-DNA tests

- 25 studies in 14,487 WLHIV
- Screen-positive ranged from 44% to 51%
- **Sensitivity** for CIN3+ = **93**% (range: 85% to 96%)
- Low specificity for <CIN2 = 60% (range: 55% to 66%)
- Specificity varied by HPV prevalence

CIN3+ detection

studyid	Method	Country	HRHPV						Sensitivity (95% CI)						Specificity (95% CI)
								1							
Duan, 2021	Hybrid Capture II	China	18.7%			-		┶	1.000 (0.541, 1.000)				+		0.776 (0.729, 0.819)
Delory, 2017	Papillocheck	Thailand	19.5%				•	-	0.714 (0.419, 0.916)				٠		0.814 (0.786, 0.841)
Joshi, 2013	Hybrid Capture II	India	26.4%					† •	1.000 (0.910, 1.000)				٠		0.762 (0.736, 0.787)
Luckett, 2019	GeneXpert	Botswana	28.3%				_	÷	1.000 (0.782, 1.000)				+		0.756 (0.701, 0.806)
Boddu, 2021	Hybrid Capture II	India	34.9%			_		。	0.889 (0.518, 0.997)				+		0.678 (0.604, 0.746)
Mane, 2012	Linear Array	India	35.6%					Ļ	0.769 (0.462, 0.950)				•		0.664 (0.603, 0.721)
Strickler, 2020	Cobas HPV	USA	36.0%				_	┥	0.871 (0.702, 0.964)				•		0.660 (0.626, 0.693)
Ndizeye, 2019	PCR (Riatol)	Burundi	38.2%				_	÷	1.000 (0.735, 1.000)			-	•		0.629 (0.591, 0.666)
Kelly, 2021 (BF)	Hybrid Capture II	Burkina Faso	41.8%				_	•	1.000 (0.753, 1.000)			-	-		0.596 (0.553, 0.638)
Kremer, 2019	GP5+/6+ PCR	South Africa	43.9%				-•	-1	0.831 (0.710, 0.916)			ł	e -		0.664 (0.598, 0.725)
Kuhn, 2010	Hybrid Capture II	South Africa	44.9%					∔	0.917 (0.615, 0.998)			+			0.570 (0.512, 0.627)
De Andrade, 2011	Hybrid Capture II	Brazil	47.0%					┿	1.000 (0.664, 1.000)			-			0.543 (0.490, 0.596)
Chibwesha, 2016	GeneXpert	Zambia	47.5%					+	0.900 (0.683, 0.988)			-+			0.573 (0.497, 0.647)
McDonald, 2012	Hybrid Capture II	South Africa	52.4%				-	+	0.964 (0.817, 0.999)			٠			0.485 (0.458, 0.512)
Chung, 2013	GP5+/6+ PCR	Kenya	53.3%				-	∔	0.936 (0.825, 0.987)			+			0.512 (0.463, 0.560)
Kuhn, 2020	GeneXpert	South Africa	57.7%					÷	0.934 (0.869, 0.973)			-	-		0.598 (0.540, 0.654)
Kelly, 2021 (SA)	Hybrid Capture II	South Africa	59.8%				-	-	0.846 (0.719, 0.931)			+			0.427 (0.384, 0.471)
Firnhaber, 2012	Hybrid Capture II	South Africa	60.7%					r	0.980 (0.931, 0.998)			•			0.428 (0.398, 0.459)
Mbulawa, 2016	GeneXpert	South Africa	62.0%					÷	0.961 (0.903, 0.989)			٠			0.414 (0.384, 0.444)
Overall								٥	0.932 (0.890, 0.959)			<	>		0.615 (0.557, 0.669)
				—				Ц		—			L	_	
				0	.25	.5	.75	1		0	.25	.5	.75	1	
					S	ensitivi	ty				s	pecifici	ity		

The **specificity** of HPV DNA test **higher** in:

- older vs. younger women
- Women with higher CD4+ T-cell count and on prolonged ART

Restricted genotype approach

- Specificity of 14-HR vs. 8-HR*: 53% vs. 63% (CIN3+) with no change in sensitivity
- **Combined with a higher cut-off** for test positivity increased specificity (73%) but with some loss in sensitivity (82%).

CIN3+ detection

*8 HR-HPV types (HPV-16, -18, -31, -33, -35, -45, -52, or 58)

Triage of HPV-positive WLHIV

- VIA operators and cytologists reported to be blinded to HPV
- Similar heterogeneity observed as in screening
- HSIL+ high sensitivity & specificity for CIN3+ (80.2/84.1%)

Combination of restricted genotype + visual methods/cytology??

CIN2+ detection

Effectiveness of screening in WLHIV

Cervical precancer (CIN2+) incidence over 36 months

- ↓ 80% in HPV-and-treat group vs. no delayed screening (Relative Risk=0.20, 95% CI 0.06–0.69)
- ↓ 49% VIA-and-treat group vs. no delayed screening (Relative Risk=0.51, 95% CI 0.29–0.89)

Effectiveness influenced by:

- Accuracy of screening-triage strategies
- Coverage of screening
- Treatment of screen positive (coverage and effectiveness)

Kuhn et al 2010, AIDS.24(16):2553-61

Screening coverage

- Estimated cervical cancer screening coverage in 2019, women aged 30-49 years in 127 countries worldwide
- **38%** of women aged 30-49 years have been screened at least once in their lifetime;

88% in high-income settings

15% in low-income countries

- => WHO target of 70% screening coverage
- HPV DNA test or cytology most common in HIC
- VIA more common in Sub-Saharan Africa

• WLHIV????

HIV prevalence

Questions remain

- Optimal screening-triage strategy
 - HR-HPV screen with restricted genotype/other molecular method in screening alone ?
- Optimal interval of screening??
 - More prospective data on HR-HPV infection/cervical precancer incidence at 12, 24, 36 months
- Implementation
 - Opportunity for integration in HIV care (+/- self sampling)
 - Feasible? Acceptable? Cost-effective?
- Change in access to ART and effectiveness
 - change in HPV prevalence and cervical cancer trends in future ?
 - Impact on molecular screening methods

Initiation & frequency of screening

Age-specific incidence rates of cervical cancer according to HIV-attribution status

Data on cervical precancer by age?

Cervical precancer incidence in screen neg WLHIV

Cyto normal WLHIV followed over 5 years (USA)

- HR-HPV : similar risk WLHIV vs. HIV-neg
- HR-HPV+ : similar risk WLHIV CD4>500 vs. HIV neg
- WLHIV with <CIN2 followed over 16 months (SSA)
 - CIN2/3 incidence VIA neg (2-4%) vs. HPV-DNA neg (0.5-2%)

Lacking long term prospective data to ascertain optimal interval

Khalil et al, Int. J. Cancer. 2022;150:761–772; Strickler et al; Clin Infect Dis 2021 May 4;72(9):1529-1537; Firnhaber et al; PLoS One 2016 Jan 5;11(1):e0144905; Kelly et al, PLOS Medicine. 2021;18(3):e1003528.