MicroRNAs in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CM) as Predictive Biomarkers of Structural Cardiotoxicity

Martina Cherubin^{1,2}, Annie Delaunois¹, Jean-Pierre Valentin¹, Maaike Alaerts², Pieter-Jan Guns³, Vitalina Gryshkova¹

BACKGROUND and **OBJECTIVES**

- Drug-induced cardiotoxicity remains one of the main causes of drug attrition during preclinical development¹, suggesting the need to identify an assay/model that can accurately predict the true effect of a new drug candidate. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) based-assays have been broadly employed in drug discovery for proarrhythmic risk assessment, and disease modeling; however, they poorly predict structural changes caused by a drug (i.e., morphological damage or loss of cellular and/or subcellular components)^{2,3}. Therefore, identifying novel assays and biomarkers that can identify structural and functional cardiotoxicants, will help to eliminate potential harmful candidates early in drug discovery.
- MicroRNAs (miRNAs) have been widely investigated in the past decade as alternative biomarkers of cardiotoxicity, and several studies have linked their dysregulation to several cardiovascular liabilities ^{4,5,6}.
- The current study has the principal objective of investigating the dysregulation of miRNAs in hiPSC-CM after the treatment with a broad set of drugs known for causing structural cardiotoxicity.

MATERIALS AND METHODS

Cell Culture		Molecular Biology	Table 1: List of structural cardiotoxicants divided by drug class.	
 hiPSC-CM: iCell² Cardiomyocytes, 01434 	FUJifilm	 Extraction and quantification of total RNA from cell pellet (72hrs treatment) (miRNesy 96 Kit, Qiagen). 	*HESI Stem Cell (SC) working group (wg) blinded compounds in bold.	
	CELLUIA Dynamics		Drug class	Compounds

¹ UCB Biopharma SRL, Brainel'Alleud, Belgium ² Center of Medical Genetics,

University of Antwerp and Antwerp University Hospital, Antwerp, Belgium

³ Physio-pharmacology, University of Antwerp, Antwerp, **Belgium**

RESULTS

Compound name	Concentration (µM)	Cell Index	Contractility Amplitude	Beating Rate
Doxorubicin	0.1, 0.03, 0.01, 0.003	-50%	-43%	+28%
Endothelin-1	0.1, 0.03, 0.001, 0.0003	+2%	-28%	+15%
Erlotinib	7.7, 2.3, 0.77, 0.23	-9%	+8%	-19%
Arsenic Trioxide	0.48, 0.16, 0.048, 0.016	+15%	+15%	+8%
Pentamidine	3, 1, 0.3, 0.1	-28%	-48%	-20%
Sunitinib	1, 0.3, 0.1, 0.01	-8%	-22%	-32%
BMS-986094	3, 1, 0.3, 0.1	-15%	-8%	+24%
Nilotinib	1, 0.3, 0.1, 0.01	-11%	-37%	-17%
Vincristine	0.3, 0.03, 0.003, 0.0003	-29%	-64%	+18%
Vinblastine	0.3, 0.03, 0.003, 0.0003	-24%	-67%	+35%
Vinorelbine	3, 1, 0.3, 0.1	-64%	-91%	-78%
Milrinone	10, 3, 0.3, 0.1	-9%	-18%	+6%

Table 2: Structural cardiotoxicants and their effects on hiPSC-CM after 72h treatment among different parameters. The table captures the maximum percentage change from the baseline (+ increase, - decrease). The effect considered biologically significant at above 20% from the baseline.

Fig. 3: miRNAs upregulation following the treatment with structural cardiotoxicants. Compounds were chosen between commercially available drugs and/or compounds for laboratory testing, based on their cardiovascular adverse effect.. * Upregulation of miRNAs considered significant above 2 fold change (normalized on DMSO control and housekeeping miRNAs).

Maastricht UMC+

CONCLUSIONS AND FUTURE PERSPECTIVES

UZA⁴

- **References:** • Upregulation of several miRNA candidates in hiPSC-CM was observed following the 72hrs treatment with structural cardiotoxicants, even when Cell Index, measured by RTCA CardioECR system, did not change significantly (endothelin-1, sunitinib, milrinone, etc.). 1. Weaver and Valentin, *Toxicol Sci*
- The combination of miRNA candidates could be used to screen for cardiotoxic compounds in addition to other functional and structural assays on hiPSC-CM.
- The translatability of the highly upregulated miRNAs will be assessed in patient-derived cardiomyocytes, generated from healthy individuals (control) and patients with cardiovascular liabilities induced by cancer therapy.
- The assay will be further optimized to study miRNAs dysregulation in culture media, as well as in patient's serum, to investigate new potential 5. Kim et al., *Yonsei Med J* (2018) circulating biomarkers. 6. Mirna et al., *Cells* (2019)

Universiteit Antwerpen

(2019)

(2016)

Maastricht University

2. Palmer et al., *Toxicol Sci* (2020)

4. Vegter et al., Eur J Heart Fail 18

3. Gryshkova et al., Arch. Toxicol. (2022)