Chronic Treatment with PI3K Inhibitors Augments Late Cardiac Sodium Current Underlying QT-Prolonging Liability An Acting Role for Akt

Anna S. Savchenko, Sandrine R.M. Seyen, Roel L.H. Spätjens, Jordi Heijman, Paul G.A. Volders

Department of Cardiology, Maastricht University Medical Center, the Netherlands

Background

- An excessive increase in cardiac late sodium current (I_{Nal}) during the plateau phase of the ventricular action potential (AP) contributes to QT prolongation and can promote life-threatening Torsades de Pointes (TdP) arrhythmias (Fig. 1).
- Accumulating evidence indicates a role for pharmacological I_{Nal} augmentation in proarrhythmic drug-induced QT-interval lengthening, suggesting a need for additional preclinical drug-safety screening for the presence of excessive I_{NaL} .
- Chronic inhibition of the phosphoinositide 3-kinase (PI3K) signaling pathway by multiple drugs has been recognized to affect multiple ion currents including I_{Nal} . However, the exact downstream effectors remain unclear. Here, we addressed the hypothesis that the chronic inhibition of downstream Akt protein underlies \mathbf{I}_{NaL}

Methods

- Western Blotting analysis was used to confirm the inhibition of PI3K/Akt axis, by quantification of the amount of phosporylated (active) Akt (pAkt Ser473).
- Membrane currents were measured using the whole-cell patch-clamp technique in a heterologous expression model (Chinese Hamster Ovary [CHO] cells) transiently transfected with wild-type SCN5A-GFP-fused plasmid and in human induced pluripotent stem-cell derived cardiomyocytes (hiPSC-CMs¹).
- I_{Na} and tetrodotoxin (TTX)-sensitive I_{Nal} currents were measured at room temperature. In hIPSC-CM 1µM nifedipine was used to block L-type Ca²⁺ channels.

augmentation.

Cells were incubated for 5 or 48 hours with drugs directly inhibiting PI3Ka (alpelisib 1μ M) or Akt (Akti 1μ M) for mechanistic investigations of PI3K signaling.

- Chronic inhibition (>5 hours) of either PI3K or Akt results in decreased PI3K
- In CHO cells, chronic PI3K inhibition leads to negative shift in the voltage dependence of steady-state activation (Fig. 3A, B), Akt inhibition shows a similar yet non-significant trend (Fig. 3A, B). Both drugs accelerate channel kinetics,
- Inhibition of PI3K and downstream Akt promotes increased peak I_{Na} in both CHO
- Chronic PI3K/Akt inhibition induces increased total I_{Nal} in both cell types (Fig. 3F,
- The effect of Akt inhibition on peak and late I_{Na} is prevented by intrapipette addition of phosphatidylinositol (3,4,5)-trisphosphate (PIP3, Fig. 4A, B).

- Inhibition of PI3K/Akt signalling (Fig. 5A) regulates ion-channel function, particularly of NaV1.5 already after 5 hours of exposure, leading to changes in
- One significant change is the proarrhythmic increase in I_{Nal}, prolonging the afterdepolarizations (EAD; Fig. 5B), which may degenerate into TdP arrhythmia in the presence of concomitant cardiovascular risks and morbidities in patients.
- This I_{NaL} increase is mediated by PI3K signaling. Moreover, our work indicates that Akt (Fig. 5A) is the main downstream effector of peak and late I_{Na} regulation. Thus, modulation of PI3K/Akt signalling should be considered in drug-incuded

Figure 5: Conceptual overview of the potential role of PI3K/Akt inhibition in

