Organelle profiling of compound-induced effects in human iPSCderived cardiomyocytes in combination with electrophysiology assays for in vitro prediction of cardiac safety

SP059

Brigitta Rita Szabó^{1,2}, Georgios Kosmidis¹, Paul Volders², Elena Matsa¹

¹Ncardia Services B.V., Discovery Technology, Leiden, Netherlands (The), ²Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands (The)

ABSTRACT

Methods with suboptimal efficiency for detecting cardiovascular side-effects burden the pharmaceutical industry. As scalable, human-based alternatives to traditional models, hiPSC-CMs show great promise in the field. However, for widespread industrial application, high quality validation studies are critical.

Our goal was to establish a highly predictive in vitro hiPSC-CM drug screening protocol leveraging the power of morphological profiling multiplexed with hed electrophysiological readouts (multi-electrode array; MEA)

Three healthy control hiPSC-CM lines were cultured in serum-free conditions and then treated with a library of seventeen compounds at ranges comparable to maximal dinical plasma concentrations. High content imaging assays for sarcomeres, mitochondria, DNA damage, Golgi, endoplasmi reticulum, gap junctions, peroxisomes and lysosomes were validated in a 384 well plate format. Morphological data was analysed in combination with MEA recordings. For deeper mechanistic insight, RNA sequencing was also performed.

As expected, positive control, doxorubicin reduced viability up to 70%. Investigating its effect on each readout served as a key step in establishing proof of concept. In accordance with its mechanism of action, dose-dependent increase in yH2AX (marker of DNA damage) was present with minor differences in sensitivity between cell lines . Lysosomal, nucleolar, and gap junction morphology was affected as well. Electrophysiological activity was altered even at low concentrations, while arrhythmia/quiescence was detected >1 µM. With 0.1 µM Doxorubicin, 125 genes were differentially expressed compared to vehicle, several of which were involved in cellular responses to DNA damage and the p53 pathway. Notably, TOP2A, a marker of DNA stress and a target of doxorubicin, was significantly downregulated.

For all 17 drugs tested, each parameter was examined. All parameters were collated for bioinformatic analysis. Collecting such an elaborate set of features is fundamental for profiling assays. First, principal component analysis revealed compound effects that otherwise remained hidden. Second, to build a predictive cardiac safety score, partial least squares-discriminant analysis revealed specific spatial clustering of compounds with potential toxicity.

Hence, morphological analysis in combination with traditional readouts and bioinformatics enables deeper understanding and in vitro prediction of compound activity and toxicity. Drug-induced deregulation in pathways provides mechanistic explanations for the structural and functional changes in hiPSC-CMs

Mechanism of action of each drug was also

age analysis Fluorescent image (right) and corresponding analysis mask (left) for feature extraction

Bioinformatical analysis

- Data preprocessing included the following steps
- Outlier removal based on cytoplasm area average • Median imputation to handle missing values
- Principal Component Analysis (PCA), sparse Partial Least Squares Analysis (sPLSDA) and Uniform Manifold Approximation (UMAP) and Projection were used as dimensionality reduction tools to explore clustering of the data and identify trends • A training data subsample was used to train a Random Forest model with Out-of-Bag accuracy estimates. This model was
- used to predict the side effects of the FDA-label warnings of the compounds
- Recursive Feature Elimination (RFE) was performed over each individual compound versus vehicle control to assess the parameters with the most predictive value for that compound

CONCLUSIONS

- We were able to optimize staining protocols for a selection of dyes targeting subcellular organelles and membranes, utilizing high content imaging methods, which complement already standardized methods for safety assessment in vitro using hiPSC-CMs
- Examining each parameter individually revealed expected compound induced effects.

- · sPLSDA shows clustering according to drug classes defined by their most prominent cardiac side effects. Using the same classification, the trained Random Forest model showed < 0.1 classification error for compounds with no effect.
- RFE of optimal variables detected for at least cell lines/batches provide further insight into the different compound induced morphological profiles.

Venn diagram features identified by RFE performed on all data points of the selected condition. Features that were flagged as optimal in at least 3 of the included cell lines/batches are listed Highlighted features were detected in all 4 hiPSC-CMs.

adth

age Shape Facto

eight grated Intensity

- dependent dose responses
- B. sPLSDA shows clustering of compounds according to their side effect classes Random Forest model predicts classes with no side effects with high accuracy
- Features with the most predictive value correspond to Amiodarone's known mitochondrial and lysosomal toxicity

MitoTracker CMX Ros Anti-yH2.AX antibody chondria Wheat Germ Agglutini Endoplasmic reticulus (ER Concanavalin A Anti-Cxc43 antibody LysoTracker Red Anti-PMP70 antibody Gap junctions (connexin 43) nti-fibrillarin antibody Table 2. Validated immunofluorescence assays

Fluorescent probes

Nuclei

Target <u>structures</u>

DNA damage

iolgi