Long-Term Amiodarone Exposure Augments I_{NaL} via PI3K/Akt Inhibition and Remodels I_{Kr}

Anna S. Savchenko, Sandrine R.M. Seyen, Roel L.H. Spätjens, Jordi Heijman, Paul G.A. Volders

Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands

Background	Results
 Amiodarone is an effective antiarrhythmic drug (AAD) widely used in clinics, yet with a tendency for drug-induced proarrhythmia in susceptible individuals. Differential acute and long-term electrophysiological effects of amiodarone remain incompletely understood and may affect proarrhythmia liability. Hence, we studied temporal effects of amiodarone on multiple cardiac ion channels. As a potential mechanism for the distinct acute and long-term effects, we proposed inhibition of the PI3K pathway, which is recognized to affect several cardiac ion currents, including late sodium current (<i>I</i>_{NaL}), rapid delayed-rectifier potassium current (<i>I</i>_{Ks}; Fig. 1B). 	 In CHO cells, acute amiodarone treatment resulted in ~30% <i>I</i>_{Kr} channel block whether combined with control or chronic treatment (Fig. 2A, B). Interestingly, long-term amiodarone exposure (48 h) reduced <i>I</i>_{Kr} even upon drug wash out resulting in a 30%-60% current reduction (Fig. 2A, B). In contrast to <i>I</i>_{Kr}, <i>I</i>_{Ks} recordings showed only acute block of ~30% by amiodarone, without any chronic effect (Fig. 2C, D). Long-term treatment of CHO cells with dofetilide, known to augment <i>I</i>_{NaL} in a PI3K-dependent manner, with Akt inhibitor and with amiodarone, augmented both peak <i>I</i>_{Na} (Fig. 3A, C) and <i>I</i>_{NaL} (Fig. 3B, D) currents. This increase was abolished by the pathway activation with PIP3 (Fig. 1B; Fig. 3C,D).

• Dronedarone had no significant effect on peak I_{Na} or I_{NaL} and showed no

Figure 1: Differential long-term effects of amiodarone on ion channels can be mediated via PI3K signaling

- significant changes in the presence of PIP3.
- In hiPSC-CMs, augmentation of I_{Na} and I_{NaL} currents by amiodarone was confirmed after 5 hours of exposure (Fig. 4A-D).

Membrane currents were measured using the whole-cell patch-clamp technique in Chinese Hamster Ovary (CHO) cells transiently transfected with GFP plasmids carrying: wild-type SCN5A; KCNH2; or KCNQ1/ KCNE1 / Yotiao, for I_{Na} , I_{Kr} and I_{Ks} measurements, respectively. Effects of amiodarone on I_{Na} were confirmed in human induced pluripotent stem-cell derived cardiomyocytes (hiPSC-CMs). I_{Kr} , I_{Ks} , peak I_{Na} , and tetrodotoxin (TTX)-sensitive I_{NaL} were measured at room temperature. Cells were incubated with different AADs or Akt inhibitor (Akti 1 µM) for 5 hours (hiPSC-CMs) or 48 hours (CHO) at 37°C. Phosphatidylinositol-3,4,5triphosphate (PIP3) 1 µM was added intrapipette during I_{Na} experiments.

Figure 2: Acute and chronic effects of amiodarone on main repolarizing currents

- Long-term *in vitro* amiodarone application results in remodelling of I_{Kr} but not I_{Ks} . Downregulation of I_{Kr} remains after drug wash out (Fig. 2B).
- Long-term amiodarone application is accompanied by an increase in I_{NaL}, excessive augmentation of which is known to promote arrhythmias (Fig. 3D, Fig. 4D). The proposed underlying mechanism is inhibition of PI3K/Akt signaling.
- Dronedarone may be considered a safer treatment option in proarrhythmiaprone patients as no significant I_{NaL} changes were observed.
- Although acute I_{Kr} block is common to all examined compounds, there is an urgent need to elucidate long-term drug effects on multiple ion currents, e.g. I_{Kr} and I_{NaL} , to increase safety of existing and newly developed medicines.

INSPIRE receives funding from the EU Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 858070

Correspondence: a.savchenko@maastrichtuniversity.nl