Could secreted microRNAs in Human-Induced Pluripotent Stem Cell-**Derived Cardiomyocytes (hiPSC-CM) Be Predictive Biomarkers of Structural Cardiotoxicity?**

Martina Cherubin^{1,2}, Annie Delaunois¹, Jean-Pierre Valentin¹, Maaike Alaerts², Pieter-Jan Guns³, Vitalina Gryshkova¹

BACKGROUND and **OBJECTIVES**

- In pharmaceutical industries, the identification of novel biomarkers to predict structural cardiotoxicity is pivotal to avoid late-stage drug attrition. Indeed, almost half of safety-related attrition is caused by cardiovascular toxicity, of which 48% is due to drug-induced structural changes (i.e., morphological damage or loss of cellular and/or subcellular components)^{1,2}.
- MicroRNAs (miRNAs) have been widely investigated in the past decade as alternative biomarkers, and several studies have linked their dysregulation to cardiovascular liabilities ^{3,4,5}.
- miRNAs secreted in biofluids have been investigated as translatable biomarkers to clinic. However, in vitro detection methods present several challenges. A broader application of miRNA-based assays to detect cardiotoxicity is limited by their low abundance in the supernatant of cell cultures, as well as the lack of high-throughput platforms and established methods for RNA extraction⁶.
- This study aims to investigate the upregulation of circulating miRNAs in hiPSC-CM supernatant after the treatment with known structural cardiotoxicants.

MATERIALS AND METHODS

Cardiomyocytes Cell Culture	miRNAs Detection	Table 1: List of 32 structur	ral cardiotoxicants divided by drug class.
 hiPSC-CM: iCell² Cardiomyocytes, 01434 	Analysis of miRNAs in hiPSC-CM pellet and supernatant by	*HESI Stem Cell (SC) work	king group (wg) blinded compounds in bold.
	RT-qPCR	Drug class	Compounds
Functional measurements by xCELLigence RTCA CardioECR	The nenet of miDNIAs enclyred included 4 nermolizers and 40	Anthracyclines	Doxorubicin, Idarubicin, Daunorubicin, Epirubicin

¹ UCB Biopharma SRL, Brainel'Alleud, Belgium ² Center of Medical Genetics, **University of Antwerp and** Antwerp University Hospital, Antwerp, Belgium

³ Physio-pharmacology, University of Antwerp, Antwerp, **Belgium**

- platform (data previously presented at SPS 2022)
- Collection of supernatant every 24h and cell pellet at 72h

The panel of miRNAs analyzed included 4 normalizers and 12 target miRNAs

			Effect on DNA/RNA	5-Eluorouraci	
Issue with Supernatant RNA	Solution		(DNA synthesis,	Cyclophosph	
Low abundance of miRNAs in supernatant	Experiment run in 24-well plate: 275'000 cells/mL		topoisomerase inhibitors, etc.)		
Lack of established housekeeping miRNAs	Spike-in control (cel-miR-39-3p)		Other Mechanism of Action	Milrinone, Ar Tegaserod, De Rofecoxib	

Anthracycline-like mechanism	Mitoxantrone
Tyrosine Kinase (TK) Inhibitors	Imatinib, Lapatinib, Sunitinib , Sorafenib, Crizotinib, Dasatinib, Nilotinib, Erlotinib
Proteasome Inhibitors	Bortezomib, Carfilzomib, Ixazomib
Structure Disruptors (Vinca Alkaloids, Taxanes)	Vincristine, Vinblastine, Vinorelbine , Paclitaxel, Endothelin-1
Effect on DNA/RNA (DNA synthesis, topoisomerase inhibitors, etc.)	5-Fluorouracil, Pentamidine , Etoposide, Cyclophosphamide
Other Mechanism of Action	Milrinone, Arsenic Trioxide, BMS-986094, Tegaserod, Dexfenfluramine, Valdecoxib,

RESULTS

		182-5p	126-3p	29a-5p	146 0- 5p	966-5p
Doxorubicin 0.1µM	24h	ND	33.386	33.932	ND	ND
	48h	ND	32.707	ND	ND	ND
	72h	ND	32.080	27.400	ND	ND
	24h	ND	33.057	32.739	ND	ND
ldarubicin 0.1μM	48h	ND	33.321	31.775	ND	ND
	72h	ND	32.183	26.935	ND	34.398
	24h	ND	33.056	28.198	ND	ND
Mitoxantrone 1µM	48h	ND	36.574	30.659	ND	ND
	72h	ND	34.247	26.251	ND	ND
Vinblastine 0.3µM	24h	ND	34.524	31.444	ND	ND
	48h	35.923	34.960	29.858	ND	ND
	72h	ND	32.172	29.507	38.82	38.239

hiPSC-CM supernatant over 72h. Treatments' concentration selected based on upregulation observed in cell pellet after 72h. Out of 12 miRNAs targets, only 4 were significantly upregulated in response to structural cardiotoxicants. For the other miRNAs selected, DMSO values were not detected (ND). Normalization to FC was not possible. Data

References:

(2022)

(2016)

. Weaver et Valentin, *Toxicol Sci* (2019)

2. Gryshkova et al., Arch. Toxicol.

3. Vegter et al., Eur J Heart Fail 18

4. Kim et al., *Yonsei Med J* (2018)

6. Felekkis et Papaneophytou, Int. J.

5. Mirna et al., *Cells* (2019)

Mol. Sci (2020)

are presented as Ct values.

CONCLUSIONS AND FUTURE PERSPECTIVES

- Upregulation of several miRNA candidates in hiPSC-CM pellet was observed following the 72hrs treatment with structural cardiotoxicants, with the largest upregulation induced by anthracyclines and drugs affecting the microtubular structure (Vinca Alkaloids, Taxanes, etc.). Highest FC were observed for hsa-miR-187-3p, hsa-miR-146b-5p, hsa-miR-133b, hsa-miR-126-3p, hsa-miR-96-5p and hsa-miR-365a-5p.
- The optimized assay to study miRNAs dysregulation in the supernatant revealed the upregulation of several miRNAs in a time-dependent manner. Significant upregulation was found for hsa-miR-187-3p, hsa-miR-133b, hsa-miR-208b-3p and hsa-miR-365a-5p after 72h incubation with structural cardiotoxicants.
- The translatability of the highly upregulated miRNAs will be assessed in patient-derived cardiomyocytes, generated from healthy individuals (control) and patients with cardiovascular liabilities induced by cancer therapy, both in cell pellet and supernatant. The upregulation of circulating miRNAs in the supernatant will be compared to serum/circulating miRNAs from patients treated with structural cardiotoxicants.

