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1. CONTENT DESCRIPTION

The ALGAR Summer School 2025 is devoted to the topic of linear algebraic
groups and algebras with involution. It intends to provide a bridge between a
well-studied class of algebraic structures to the study of properties of varieties.

Two central problems in arithmetic and algebraic geometry are to decide whether
some variety over a given field has rational points or whether it is even rational,
that is, birational to some affine n-space for some n. This problem is particularly
well studied for linear algebraic groups and their torsors.

If K is an algebraically closed field, then it turns out that every connected linear
algebraic group over K is rational.

We will work over a general field K of characteristic different from 2. A typical
example of a linear algebraic group is the orthogonal group O(y) of some non-
degenerate quadratic form ¢ over K. It has two connected components, one of
them being the special orthogonal group SO(y). The latter group is always a ra-
tional variety. The situation changes if we extend the group SO(y) to the group of
projective similitudes PSim(i) and its connected subgroup PSim™ (¢). We assume
now that dim(p) = 2n with n € N. It was shown by Merkurjev [30] that PSim™ (¢)
is non-rational in general when n > 3. This crucially relies on the fact that a
rational variety is in particular rationally connected, a property first studied by
Y. Manin around 1974. This property is generally weaker than rationality, and for
certain linear algebraic groups like PSim™(¢), it has a very interesting algebraic
interpretation, also recognised by Merkurjev. One aim of the summer school is to
shed light on these phenomena.

The groups SO(y) and PSim™(y) are examples of connected semi-simple linear
algebraic groups, and the latter one is adjoint, i.e. its center is trivial. Over an
algebraically closed field, linear algebraic groups are classified in terms of root
systems and corresponding Dynkin diagrams. An extension of this classification
which works over arbitrary fields was provided by André Weil [42] in 1961. The
classification makes crucial use of algebras with involution. Let V' be the K-vector
space on which ¢ is defined. Then ¢ induces a (so-called adjoint) involution on
the endomorphism algebra Endg (V). More generally, one considers automorphism
groups of a K-algebra with involution (A, o), that is, where A is a central simple
K-algebra and o is an involution on A. By Weil’s classification, all classical simply
connected linear algebraic groups are obtained in a similar fashion.

Note that an algebraic group G over K always has K-rational points. To ob-
tain varieties related to G for which the presence of rational points becomes an
interesting question is that of a G-torsor, that is, a K-variety on which G acts in
a simply transitive way. Given a G-torsor X, there will always be a finite Galois
extension L/K where X has an L-rational point, and this fact can be used to
classify G-torsors over K by a Galois cohomology set. The question then arises
for which type of groups G and over which type of fields K a non-trivial G-torsor
can arise. Serre’s Conjectures I and II postulate that this does not happen over
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fields of small cohomological dimension. This can be seen as an extension of the
fact that over an algebraically closed field, connected linear algebraic groups are
rational. One of the central topics of this summer school will be to formulate,
illustrate and explain these two famous conjectures.
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2. PRELIMINARY DAYS AND PREQUISITES

Throughout the summer school, we assume fluency with basic algebraic struc-
tures covered in most bachelor’s programmes, as well as some familiarity with the
following concepts:

e Tensor products of modules and of algebras over commutative rings — [29]
e Projective modules — [29]

e Quadratic forms

e Quaternion algebras — [21, Chap. 1]

e Central simple algebras — [21, Sections 2.1-2.4]

e Discrete valuations — [21, Appendix A.6]

The preliminary days will consist of the following six half-day workshops, start-
ing each with a one-hour lecture, followed by an interactive exercise session.

2.1. Functorial approach to affine schemes. We give a light introduction to
the theory of affine schemes from the functorial point of view. We explain why
the idea of algebraic varieties defined by polynomial equations is captured by
(representable) functors on categories of commutative algebras, which leads to the
concept of affine scheme. We define morphisms between schemes, their algebra of
functions, their open and closed subschemes, the notion of connectedness, as well
as birational maps.

2.2. Quadratic forms. We introduce the basic concepts on quadratic forms over
fields. In this context, we will restrict to fields of characteristic different from
2. In particular, isometry, isotropy, hyperbolicity, the operations orthogonal sum
and tensor product, as well as isometry and the Witt decomposition theorem are
revisited. We look at the orthogonal group of a quadratic form as an example of a
linear algebraic group. We define the group of similarity factors of quadratic forms
and relate it to the group of proper projective similitudes. We also introduce the
so-called Pfister forms.

2.3. Central simple algebras and involutions. We give a brief introduction to
central simple algebras and formulate Wedderburn’s Theorem. We discuss splitting
fields and introduce the reduced norm and reduced trace of elements. Quaternion
algebras provide a first interesting class of examples of central simple algebras. We
look at nwvolutions on a central simple algebras and show how on a matrix algebra
a quadratic form gives rise to an (orthogonal) involution. We will see the different
types of involutions, namely orthogonal, symplectic and unitary involutions, with
basic examples.

2.4. Affine group schemes. We introduce affine group schemes, in several equiv-
alent ways: as group objects in the category of schemes, as representable functors
from commutative algebras to groups, or as the spectrum of a Hopf algebra. We
give various examples of linear algebraic groups, which are affine group schemes of
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finite type over fields, related to isometries of bilinear forms, and automorphisms
of algebras.

2.5. Galois cohomology. We establish the basic notions of Galois cohomology,
a cohomology theory which is well-tailored to the theory of fields. We define and
discuss profinite groups, in order to introduce continuous cochains, cocycles and
coboundaries. Using these, one can define the cohomology groups of a Galois field
extension, which exhibit some nice functorial properties. Towards the end, we will
also state some well-known results, as well as touch upon the partial generalisation
to a non-abelian setting.

2.6. Clifford algebra and spin group. We introduce the Clifford algebra of a
quadratic form. This leads to multiple connections to the different objects already
introduced. Depending on the parity of the dimension, either the full Clifford
algebra or its even part is a central simple algebra and actually a tensor product
of quaternion algebras. It also gives rise to the definition of a cohomological
invariant, the Clifford invariant. Finally, it is used to define the spin group of
a quadratic form, which is an example of a semi-simple simply connected linear
algebraic group.
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3. MAIN LECTURES

3.1. The classical groups (N. Garrel). In this session we introduce the classi-
cal groups, and their description in terms of algebras with involution, following [28§]
as our main reference. Given an algebra with involution (A, o), we describe the
algebraic group Sim(A, o) of similitudes of (A, o), which generalizes the group of
similitudes Sim(V, h) of a bilinear or hermitian form. From it various subquotients
are derived, such as the group of isometries Iso(4, o), proper isometries Iso* (A, o),
or the groups of projectives similitudes PSim(A, o) and proper projective simili-
tudes PSim™* (A, o), among others. Those groups are called the classical groups.

To explain the place of these groups in the classification of algebraic groups,
we introduce the classes of reductive, semisimple and simple algebraic groups, and
show how reductive groups can be reconstructed from absolutely simple groups.
In the 1950s, the Chevalley Seminar gave a classification of those absolutely simple
groups in terms of types: the classical types A,, B,, C, and D,, and the excep-
tional types, following the earlier Cartan-Killing classification of Lie algebras from
the 1890s.

In 1960, Weil [41] showed that the classical groups we introduced earlier are
exactly the absolutely simple groups of classical type.

3.2. R-equivalence on algebraic groups I (P. Gille). Given a k-variety X,
Y. Manin defined the R-equivalence on the set of k—points X (k) as the equivalence
relation generated by the following elementary relation. Denote by O the semi-
local ring of A} at 0 and 1. Two points zg, x; € X (k) are elementary R-equivalent
is there exists z(t) € X(O), such that z(0) = z¢ and z(1) = z;. This extends
to an equivalence relation on X (k), called R-equivalence. We denote by X (k)/R
the set of R-equivalence classes. This quotient set provides us an invariant that
measures somehow the defect for parametrizing rationally the k-points of X.

If G is an algebraic k—group, G(k)/R carries a natural group structure. We start
with generalities as functorialities in the group, in the field, and relation with the
R-equivalence of a compactification of G.

We will then discuss several notion of rationality and how it applies to nice
situations as split groups or special orthogonal groups. An important feature is
that of R-triviality. We say that a k—group G is R-trivial if G(F')/R =1 for each
field F//k. If G is retract rational, then it is R-trivial. The converse is an open
question.

3.3. Projective similitudes and Merkurjev’s rationality criteria (M. Ar-
chita). Consider a field K and a central simple K-algebra with involution (A, o).
We will study the linear algebraic group of proper projective similitudes PSim™ (A, o).
This is a connected linear algebraic group of adjoint type, and we shall investigate
whether it is rationally connected.
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As a guiding example, we take the case where A = EndgV for a finite-dimensional
K-vector space V' and where o = ad,, the adjoint involution of some regular qua-
dratic form ¢. (This covers precisely the case where A is split and o is orthogonal.)

An element x € A is called a similitude of (A, o) if zo(z) € K*, and in this
case we set pu(z) = zo(z) and call this the corresponding multiplier of similitude.
We denote by Sim(A, o) the group of similitudes of (A, o) and obtain that

w:Sim(A,0) = KX,z — xo(x)

is a group homomorphism.

Now PSim(A, o) is the linear algebraic groups over K whose set of K-rational
points are given by Sim(A,o)/K*. Its connected component of the identity is
denoted by PSim™ (4, o).

In [30, Theorem 1] Merkurjev characterised whether PSim* (A, o) is rationally
connected in terms of the group of multipliers of similitudes

G(o) = u(Sim(A, o))

and certain subgroups H(c) € G (o) C G(o), where H(o) is generated by K*?
and the norms from finite extensions where o becomes hyperbolic.

Theorem (Merkurjev). The linear algebraic group PSim™ (o) is rationally con-
nected if and only if GT (o) = H(ok:) holds for every field extension K'/K.

Based on this theorem, we will see various cases where we can decide whether
PSim™ (o) is rationally connected. For that we will focus on the case where A =
EndgV and o = ad, for a quadratic form ¢, and we will simply write PSim™ (),
G(p) etc. So we are discussing rational connectedness of PSim™(¢). We have

G(p) =G () ={a € K™ | ap ~p}.
Here is a list of cases where PSim™ (¢) is rationally connected:

e dim(yp) is odd or ¢ is Pfister form. (In both cases PSim™(¢) is rational.)

e o is a tensor product of a Pfister form and a form of odd dimension. (In
this case PSim™ () is stably rational.)

e o =7 1 p where m and p are scaled Pfister forms of different dimension.

This covers in particular all forms ¢ with dimy < 6. Using his criterion, Merkur-
jev found the first examples of 6-dimensional forms ¢ for which PSim™(y) is not
rationally connected.

3.4. Cohomological dimension of fields (D. Izquierdo). We will mainly fol-
low the notes [24]. In the first part, we will introduce the Galois cohomology of
fields, which is a quite technical but also very versatile tool to encode algebraic
and arithmetic properties of fields. We will see for instance that it allows to encode
Kummer theory for characteristic 0 fields and Artin-Schreier theory for positive
characteristic fields.
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We will then focus on an invariant that measures the complexity of the Galois
cohomology of a field, called the cohomological dimension of the field. We will
state some of its main properties. For instance, we will see that a perfect field has
cohomological dimension 0 if and only if it is algebraically closed, and that finite
fields have cohomological dimension 1. We will also see how the cohomological
dimension behaves for function fields and for complete discretely valued fields. In
particular, we will see that the cohomological dimension of the rational function
field k(z1, ..., x,) over some field k is equal to n plus the cohomological dimension
of k. This property explains why the cohomological dimension can be understood
as a dimension for fields.

3.5. Counterexamples for rational connectedness (M. Archita). We con-
sider a base field k with char(k) # 2. Consider elements ay, as, a3 € k* such that

(k(\/ar, /a2, /as) : k] = 8. We set £ = k(/a1, /az,/a3) and attach the following
group:
A(t/k) = (Nz(mm« N Ny 0 NZ«/@)/k) /R Npy

It turns out that this group is not always trivial. However, to construct and confirm
such examples is not easy. The first examples of such triquadratic extensions
were constructed by J.-P. Tignol in [38]. They were in characteristic 0 and the
construction was based on the presence of a valuation with residue characteristic 2.
Other constructions leaving more flexibility, were obtained by Sivatski in [34] and
[35]. These examples where A(¢/k) is nontrivial are crucial in the construction
of important examples for diverse problems in quadratic form theory, such as the
existence of indecomposable division algebras of exponent 2 and degree 8.

It was observed by Ph. Gille in [15] that such constructions can also be used to
produce forms ¢ where PSim™ (¢) is not rationally connected.

Based on this technique, we will see, following [1], that there exist quadratic
forms ¢ of trivial discriminant over C(X, Y, Z) such that PSim™ () is not rationally
connected. Furthermore, for any n > 3, we construct a quadratic form ¢ which
is a difference of two n-fold Pfister forms such that PSim*(y) is not rationally
connected. This strengthens a result of N. Bhaskhar [4].

3.6. R-equivalence on algebraic groups II (P. Gille). In this sequel to Sec-
tion 3.2, we plan to discuss the following topics.

(a) The case of algebraic tori. 1t is has been investigated by Colliot-Thélene and
Sansuc [12] by means of flasque resolutions of tori and Galois cohomology. There is
a nice characterization of R-trivial tori which is a first step towards Voskresenskii’s
conjecture stating that stably k-rational tori are k-rational.

(b) The case of special linear algebraic groups. This is the case of G = SL, (D)
where D is a central simple division k—algebra. The first result is that G(k)/R ~
SK;(D) (Voskresenskii); it can be expressed in terms of the K-theory of D and
is independent of n. The second result is that of Wang [21, §2.10] stating that
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SKi(D) = 1 when D has squarefree index. The third result is the vanishing
of SK;(D) if k is a field of cohomological dimension < 2 (Yanchevskii [43]). We
will explain also Platonov’s examples of non trivial SK; (D) following Wadsworth’s
survey on valued algebras [40]. This leads to the famous Suslin’s conjecture stating
that SL, (D) is R-trivial if and only if D has squarefree index.

(c) Simply connected isotropic groups. It generalizes the SL,, (D) case (n > 2). Let
G be a semisimple simply connected algebraic k—group G/k assumed absolutely
k-simple (that is, its absolute Dynkin diagram is connected) and isotropic (i.e.
contains G,,). In this case the group RG(k) of R-trivial elements is the Kneser-
Tits subgroup G(k)* generated by unipotent elements [18, §7]. By Tits’ simplicity
theorem, it follows that RG(k) modulo its center is a simple group. This has
numerous consequences for the simplicity of the group G(k) modulo center. We
shall discuss specific cases as Spin(q), groups of type Dy, etc.

3.7. Galois descent and classification of classical groups (N. Garrel). In
this session we shall see why the groups introduced in Session 3.1 give a complete
list of classical groups, using Galois descent, as shown by Weil in [41].

The key method is Galois descent: given a base algebraic group Gy (resp. algebra
with involution (Ag, 09)), it allows us to describe through cohomological methods
all algebraic groups G (resp. algebras with involution (A, ¢)) such that G and Gy
(resp. (A,0) and (A, 0¢)) become isomorphic over some Galois extension.

Each algebra with involution and each reductive group becomes split over some
large enough Galois extension, so we can describe any such algebra or group by
Galois descent once we know the split ones. The classification of split algebras with
involution is easy, while the classification of split simple algebraic groups is heavy
work, which we formulate without elaborating upon (see the work of Chevalley et
al.). It turns out that split groups can be described in terms of split algebras with
involution, and all classical groups are thus described in terms of algebras with
involution, which yields the list that was established in Session 3.1.

3.8. Conditions on powers of the fundamental ideal where rational con-
nectedness occurs (M. Archita). In this lecture we will discuss some results
from [1]. We continue to consider a quadratic form ¢ over a field K and the
question whether PSim™ (i) is rationally connected. We have seen that this is
characterized in terms of norm maps for certain field extensions. So we study how
norms behave in quadratic extensions and extensions of higher degree. We see a
crucial lemma about norms in biquadratic extensions, from which one can derive
several positive results. In particular, we see that PSim™ (¢) is rationally connected
when ¢ is a sum of two scaled Pfister forms of different dimension.

We then look at the powers I" K of the fundamental ideal 1K in the Witt ring of
quadratic forms over K, where n € N. We show that, if I"*1K = 0, then for every
quadratic form ¢ € K, we have G(p) = H(p) = K*2. This applies in particular
over fields of cohomological dimension n. However, this does not yet imply that



10 ALGAR 2025

PSim™ () is rationally connected in this case, as there might exist a transcendental
extension K'/K such that G(px) # H(pk:).

3.9. Principal homogeneous spaces and Serre’s Conjectures (D. Izquierdo).
We will start by introducing principal homogeneous spaces under algebraic groups.
Over a field of characteristic 0, these are algebraic varieties X endowed with an
algebraic action of an algebraic group GG so that the induced action on geometric
points is simply transitive. We will give various concrete examples.

We will then be ready to state Serre’s Conjectures I and II ([33]), that aim
at characterizing fields with cohomological dimension 1 or 2 in terms of rational
points on principal homogeneous spaces. More precisely, we will see that Serre’s
Conjecture I predicts that principal homogeneous spaces under connected linear
groups over fields with cohomological dimension 1 have rational points, and that
Serre’s Conjecture II predicts that principal homogeneous spaces under semisimple
simply connected linear groups over fields with cohomological dimension 2 have
rational points. Serre’s Conjecture I was positively settled by Steinberg [36] and
Borel-Springer [6], while Serre’s Conjecture 11 is still widely open.

3.10. Root data and structure of classical groups (N. Garrel). In Ses-
sion 3.7 we formulated the classification of split simple algebraic groups. The
necessary theory was established in the Chevalley Seminar in the 1950s: maximal
tori, Borel subgroups, Weyl group, roots and coroots, Dynkin diagram, etc. We
refer to [31] for a modern exposition in the language of schemes. It was extended
to non-split groups by Satake [32] and Tits [39]: in essence, each group can be
decomposed in an ‘anisotropic part’ and a ‘split part’, and Satake-Tits theory
explains how to understand the whole group from those two parts.

We will not prove any of those statements, even in the split case, but we will
work our way through a few examples, both split and non-split, to explain in a
hands-on manner how those notions emerge, how to compute them, and where the
split and non-split cases agree or diverge.

3.11. R-equivalence for group schemes I (P. Gille). The recent paper [20]
deals with the generalization of R-equivalence for group schemes defined over a
ring B. The definition is very similar with that over a field. We consider the
localized ring B|t]y; where ¥ is the multiplicative subset of polynomials P satisfying
P(0) P(1) € B*. Given a B-scheme X, two points xy, 1 € X (B) are elementary
R-equivalent is there exists z(t) € X (Blt]z), such that z(0) = z¢ and z(1) = z;.
We denote then by X (B)/R the set of R-equivalence classes. It turns out that
several generalities from the field case behave well in this framework. Functoriality
issues become more subtle in this framework and depend of the ring.

To be more precise, the best case is when B is (semi)-local domain with infinite
residue fields, we make this assumption from now on and denote by F' the fraction
field of B. For example, if G is an affine smooth connected group B—scheme such
that G is retract rational, we will show that G(B)/R = 1 [20, prop. 2.20].
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3.12. R-equivalence for group schemes II (P. Gille). The leading idea is to
reexamine in the ring case the topics presented in the field case in Section 3.6 and
one new.

(a) The case of tori. The theory generalizes well over rings by means of the flasque
resolutions in this setting [13]. The interest is the functorality. For example if B
is local henselian of residue field k, both base change maps T'(B)/R — T'(k)/R
and T(A)/R — T(F')/R are isomomorphisms.

(b) The case of special linear groups schemes. This is the case of G = SL,, (D) where
D is an Azumaya B-algebra. It turns out that we still have G(B)/R ~ SK;(D)
as well with Wang’s result. We have also nice behaviour in the henselian case.

(c) Simply connected isotropic group schemes. Let G be a semisimple simply con-
nected algebraic B—group G assumed absolutely B-simple (that is, its absolute
Dynkin diagram is connected) and isotropic (i.e. contains G,, p). Under additional
conditions (rank > 2, B contains a field), the group RG(B) of R-trivial elements is
again the Kneser-Tits subgroup G(B)* generated by unipotent elements [20, Thm.
6.5]. In many examples, it permits to show that G(B) is generated by unipotent
elements.

(d) Specialization of R-equivalence Assume that B is an henselian DVR and G is
a reductive B—group scheme. We have maps G(B)/R — G(F)/R and G(B)/R —
G(k)/R. We are interested to have a third map G(F)/R — G(k)/R called the
specialization map satisfying a natural compatibility. This exists [17] and is used
in the arithmetic of algebraic groups over semi-global fields [11]. There are partial
results in dimension 2 [11, §A.3] and for regular local rings containing a field
[20, §8.5].

3.13. Known results about Serre’s Conjecture II (D. Izquierdo). We will
show some of the most important results about Serre’s Conjecture II. Some of
them allow to prove the whole conjecture for given fields, while others prove the
conjecture for specific types of algebraic groups over arbitrary fields.

In terms of fields, Serre’s Conjecture II is for instance known over complete
discretely valued fields (Bruhat-Tits [7], Gille-1.-Lucchini Arteche [?GIL]), totally
imaginary number fields (Kneser [26] [27], Harder [22] [23], Chernousov [8]), func-
tion fields in two variables over C (de Jong, He, Starr [14]) and finite extensions of
C((z,y)) (Colliot-Thélene-Gille-Parimala [9]). In terms of groups, the conjecture
is known for groups of classical types (Merkurjev-Suslin [37], Gille [16], Bayer-
Fluckiger-Parimala [2], Berhuy-Frings-Tignol [3]), as well as some exceptional
types (Ga, Fy). It remains open in general for types Es, E;, Es and trialitary
Dy. At the end, I will discuss a recent result together with Lucchini Arteche [25]
that allows to reduce the conjecture to the case of fields of characteristic 0.
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4. SPECIAL TALKS

4.1. Springer’s theorem for quadratic lattices over Dedekind domains
(Jing Liu). A classical Theorem due to T.A. Springer states that a quadratic
form over a field is already isotropic if it becomes isotropic over a base change of
odd degree. In this talk, I will report on Springer-type results for representation
and isometry of quadratic lattices over Dedekind domains. As key ingredient in
the proof, certain norm principles will be mentioned. This is based on my PhD
thesis and in part on joint work with Yong Hu and Fei Xu.

4.2. The Artin-Springer Theorem for algebras with involution (Abhi-
gyan Writwik Medhi). A theorem for quadratic forms due to Artin and Springer
states that, if a quadratic form over a field F' becomes isotropic over an odd-degree
extension of F', then it must be isotropic over the base field F. In this talk, I will
recall from [28, Chapter 1] how the theory of central simple F-algebras with invo-
lution /quadratic pair can be thought of as a natural generalization of the theory of
quadratic spaces. This motivates us to find an analogous result to Artin-Springer’s
theorem for quadratic forms, in the context of algebras with involution/quadratic
pair. I will talk about the known results in this direction, focusing on the differ-
ent types of involutions separately. (See also [5].) If time permits, I will end the
talk by mentioning my work which relates the isotropy of a quadratic pair over a
generic splitting field and isotropy over an odd degree extension of the base field.
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