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1. Content description

Quadratic forms are algebraic objects with particularly nice algebraic and geo-
metric properties. Local-global principles for quadratic forms are a classical topic
of algebra and number theory. The Hasse-Minkowski Theorem formulates such a
local-global principle for the case of a number field or a function field of a curve
over a finite field. It can for example be used to show that any sum of squares in
a number field is a sum of four squares.

While quadratic forms are interesting to study over general fields, it is only for
very special fields that isotropy can be determined by a local-global principle. Such
a local-global principle is usually expressed in terms of completions (or henselisa-
tions) of a field with respect to valuations. In the last two decades, a new technique
called field patching has led to the discovery of a series of new cases of fields where
certain types of quadratic forms satisfy a local-global principle. This includes in
particular function fields of curves over complete discretely valued fields, such as
the fields Qp of p-adic numbers, where p is prime number.

When a local-global principle is present, it can also shed light on other features
of a field. This applies in particular to the study of field invariants such as the
u-invariant or the Pythagoras number. Recent breakthroughs establishing upper
bounds on such invariants for particular fields have been achieved in this way.
Also the study of Hilbert’s 10th Problem has seen recent progress based on certain
local-global principles.

The aim of the summer school is to introduce the attendees to this active re-
search area, with an emphasis on the applicability of local-global principles. This
will include providing the context for different scenarios of application, such as
the study of the u-invariant and the Pythagoras number of fields as well as of
Hilbert’s 10th Problem. Also the nuances between different types of local-global
principles, for example whether formulated in terms of discrete or of more general
valuations, as well as the notorious case of characteristic 2, will be highlighted.
Finally, examples of failure of local-global principles will be examined.

2. Introductory days

The first two days, Thursday 17 and Friday 18 August, will give an introduc-
tion in the form of exercise workshops. We will solve exercises training the basic
concepts of quadratic form theory over fields, valuations, completions and basic
invariants of quadratic forms are trained. In particular, we we will look into qua-
dratic forms and their classification over the fields of p-adic numbers Qp.

3. Main talks

3.1. Quadratic forms and valued fields (N. Daans). In this talk, we intro-
duce quadratic forms over fields, and briefly discuss some basic properties. We will
then zoom in on the behaviour of quadratic forms over fields carrying a valuation,
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especially a henselian valuation, like the field of p-adic numbers Qp or the field of
formal Laurent series R((T )). We will see that quadratic forms over a henselian
valued field can often be well understood via the valuation’s value group and the
quadratic form theory of its residue field, a notion often referred to as Springer’s
Theorem. In the exposition we will try wherever feasible to work over fields of ar-
bitrary characteristic. This includes in particular fields of characteristic 2, where
subtleties may arise which are not visible in fields of other characteristics.

For an accessible introduction to quadratic form theory over complete discretely
valued fields of residue characteristic different from 2, see e.g. [31, Chapter VI].
Our main references for quadratic forms over general henselian valued fields (not
necessarily discrete and possibly with residue characteristic 2) are [3, 13,34].

3.2. Hasse principles over number fields (R. Parimala). We recall the clas-
sical theorem of Hasse and Minkowski giving a local-global principle for isotropy
of quadratic forms over number fields. We explain how the proof uses certain
basic results from class field theory. We then look at the case of function fields
of curves over complete discretely valued fields, which we call semi-global fields.
We state a Hasse principle for quadratic forms over such fields with respect to the
divisorial discrete valuations on the field. These results lead to a proof that the
u-invariant of function fields of curves over p-adic fields is 8, which is a theorem
of [41] and [32]. In the next lecture we shall explain how the patching techniques
of Harbater-Hartmann-Krashen are used in the proof of the Hasse principle for
quadratic forms over semi-global fields [12].

3.3. A first glimpse into Berkovich analytic spaces. Part I (V. Mehmeti).
Berkovich spaces are analytic varieties defined over complete rank-one valued
fields. In this lecture I will give an introduction to these spaces, with a particular
focus of Berkovich analytic curves and their structure.

Let (k, vk) be a complete valued field, where vk is of rank one, e.g. k = Qp

for a prime number p. The topology induced on k by vk is totally disconnected,
which makes it difficult to define analytic structures (such as analytic functions
or manifolds) over k. One of the possible ways to do this is through Berkovich’s
theory, founded in the late 80’s and vastly developed since, with many applications,
namely in arithmetic geometry.

The k-analytic spaces obtained through this approach satisfy some properties
analogous to those of complex analytic varieties: locally compact, locally path-
connected, analytic functions are locally formal power series, etc. One-dimensional
Berkovich spaces, i.e. Berkovich curves, are particularly well-behaved: they have
the structure of a real graph.

We will start with some generalities on Berkovich’s theory, with the purpose
of understanding the local structure of these analytic spaces; this will eventually
lead us to their definition. In the case of curves, we will see some details on their
set-wise, topological, and analytic structure. We will also present an important
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classification of their points, which can surprisingly be interpreted both topologi-
cally and algebraically.

Examples will be presented throughout this lecture, with a particular focus at
the end on the affine and projective analytic line.

3.4. Quadratic forms, Galois cohomology and Milnor’s conjecture (D.
Izquierdo). In this first lecture, we aim at classifying quadratic forms over fields
of characteristic different from 2. We will start by recalling the constructions of the
Witt ring and of the first invariants of quadratic forms (dimension, discriminant,
Clifford invariant). We will then introduce the Galois cohomology of a field and,
thanks to the Milnor conjecture, we will see how it allows to provide a complete
classification of quadratic forms over fields.

References: [31] (Chap. II, III, IV, V, X.6), [43], [25].

3.5. Invariants for quadratic forms in Galois cohomology (R. Parimala).
We define the Galois cohomology of a field with coefficients in a discrete Galois
module. We describe the Galois cohomology groups of degree 1 and degree 2 with
values in Z/2Z. We recall the Milnor maps from the nth power of the fundamental
ideal of the Witt group to the degree-n Galois cohomology with coefficients in
Z/2Z. We describe the maps in degree one and two as the discriminant and the
Clifford invariant maps. We also define symbols in degree n and use the theorem
of Orlov-Vishik-Voevodsky resolving Milnor’s conjecture to get the nth Galois
cohomology groups being generated by symbols. We define symbol lengths in
degree n of a field. We also define the cohomological dimension of a field. We then
prove a sufficient criterion for the finiteness of the u-invariant of a field in terms
of finite cohomological dimension and bounded symbol lengths.

3.6. A first glimpse into Berkovich analytic spaces. Part II (V. Mehmeti).
In this lecture I will explain how one can establish a connection between usual al-
gebraic curves defined over a complete valued field k and Berkovich k-analytic
curves. More precisely, given a nice algebraic curve C over k, one can construct
its Berkovich analytification Can, which is a Berkovich analytic curve.

The above construction gives rise to the so called analytification functor, which
sends an algebraic object to an analytic one. We will see how this functor is
constructed, and how there are principles of comparison between the properties of
Can and C, known as GAGA theorems. This is particularly strong in the case of
curves.

As we are working with analytic objects, it is natural to define meromorphic
functions on them. Seeing as it plays an important role later on, we will briefly
introduce the sheaf of meromorphic functions on Berkovich curves. In the case of
proper curves, this sheaf also satisfies a GAGA principle.
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As a natural conclusion to this lecture, we will see the connection between
Berkovich curves and rank one valuations. More precisely, let F denote the func-
tion field of the curve C. Then the points of Can correspond to rank one valuations
on the field F .

We will see a detailed description of this phenomenon in the case of the an-
alytic projective line P1,an

k , as well as some properties of the valuations on k(T )

determined by the points of P1,an
k , such as their value groups and residue fields.

References for first two lectures: [5], [9], [36].

3.7. Defining valuation rings with local-global principles (N. Daans).
When a field K carries a valuation v, it is often motivated to ask whether the
valuation ring (respectively its maximal ideal) is existentially definable as a subset
of K. Said more explicitly, we ask whether there exist some natural number k and
a polynomial f(X, Y1, ..., Yk) over K such that, for every x ∈ K, the polynomial
f(x, Y1, ..., Yk) has a zero in Kn if and only if v(x) ≥ 0 (respectively v(x) > 0). If
the valuation v is henselian, then the existential definability of the valuation ring
and maximal ideal has been extensively studied, and can generally be obtained
under mild conditions on the value group and residue field, see e.g. [2]. On the other
hand, if the valuation is not henselian, then no general approach is known. We will
start the talk by introducing and motivating the problem of existentially defining
valuation rings. We will then discuss how local-global principles can be used to
existentially define non-henselian valuation rings. In particular, we will take a look
at how to define valuation rings in number fields and global function fields using
the Hasse-Minkowski theorem - a technique which goes back to Robinson [44] - as
well as give a sketch of more recent work on definability of valuations in function
fields, which partially relies on novel local-global principles as discussed in talks
3.9 and 3.10 [12,35]. This work can be found in my PhD thesis [8, Chapter 7] and
will appear in a publication coauthored with Becher and Dittmann.

3.8. Brauer-Hasse-Noether exact sequences and the arithmetic of Pfister
forms (D. Izquierdo). In this lecture, we will see how to compute over various
fields some of the cohomology groups that control the classification of quadratic
forms. After a general discussion on the possible vanishing of cohomology groups
and its impact on quadratic forms, we will focus on several arithmetically and
geometrically interesting fields. We will first study the classical case of number
fields by introducing the Brauer-Hasse-Noether exact sequence and by understand-
ing what it concretely means. We will then see how Brauer-Hasse-Noether exact
sequences can also be obtained in other less classical settings, such as arithmetic
function fields and Laurent series fields.

References: [39] (Chap. VII.1 and VIII.8), [14] (Chap. 8 and 14), [29], [30],
[27].
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3.9. Field patching and local-global principles (R. Parimala). Let K be
a complete discretely valued field and X/K a smooth projective geometrically
integral curve over K. Let F = K(X) be the function field of the curve. Harbater,
Hartmann and Krashen describe a finite family of overfields of F with respect to
which they determine an obstruction set to the Hasse principle for torsors under
connected linear algebraic groups. We explain this setting and give a proof of
the Hasse principle for quadratic forms over F with respect to divisorial discrete
valuations using the patching results.

3.10. Patching over Berkovich analytic curves (V. Mehmeti). From a his-
torical point of view, one encounters the notion of patching for the first time in
complex analysis in the nineteenth century. Since then, developments of patching
techniques in different frameworks have been shown useful for various purposes
such as Galois theory, inverse Galois theory and differential algebra.

In 2009, Harbater, Hartmann and Krashen introduced a version of the tech-
nique, called field patching, adapted to an algebraic context, and applied it for
the first time to the study of local–global principles for quadratic forms defined
over function fields of curves. Field patching has since been used successfully for
proving many results related to the existence of rational points and zero-cycles of
degree one on homogeneous varieties. Abstractly, it can be stated as follows.

The patching property. Let F, F0, F1, F2 be fields such that F ⊆ Fi ⊆ F0 for
i = 1, 2. Given a linear algebraic group G/F :

∀g ∈ G(F0), ∃gi ∈ G(Fi), i = 1, 2, such that g = g1g2 ∈ G(F0).

In this lecture, we will see how this method can be extended to Berkovich
analytic curves encountered in the first two lectures. One can isolate abstract
hypotheses under which the patching property holds, and it turns out that said
hypotheses are naturally satisfied in the setting of Berkovich analytic curves. A
difference with the setup of Harbater, Hartmann and Krashen is that patching
becomes quite geometric in nature here. In fact, loosely speaking, later on we will
interpret it as a patching of meromorphic functions on the Berkovich curve. We
will also spend some time working out a couple of examples.

References: [17], [18], [19], [20], [35], [42], [33].

3.11. Tate-Shafarevich groups and Poitou-Tate duality (D. Izquierdo).
In this third lecture, we will see that over various fields having a suitable arithmetic
behaviour, the Galois cohomology satisfies nice duality theorems. We will start
by the classical Tate duality over p-adic fields and the Poitou-Tate duality over
number fields, and we will then see how such dualities can be generalized to semi-
global fields or Laurent series fields. We will constantly illustrate such dualities
by applying them to various concrete questions related to quadratic forms (for
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instance to study square classes in a field or more generally to Grunwald-Wang-
like theorems).

References: [39] (Chap. VII.2 and VIII.6), [14] (Chap. 10, 17 and 18), [15], [16],
[10], [26].

3.12. Local–global principles for quadratic forms defined over function
fields of curves (V. Mehmeti). In this lecture we will see an application of
patching techniques on Berkovich curves (seen in Lecture 3.10) to local–global
principles for quadratic forms. We recall:

Local–global principle. Let F be a field, and (Fi)i∈I a family of overfields of F
(i.e. F ( Fi for all i ∈ I). Given a quadratic form q over F ,

q is isotropic over F ⇐⇒ q is isotropic over Fi ∀i ∈ I.

In this lecture, F will be the function field of a curve C defined over a complete
valued field of arbitrary characteristic (the characteristic 2 case is covered thanks to
a remark of N. Daans). The first local–global principle we will prove is geometric in
nature, in the sense that one can construct F and the family of overfields (Fi)i∈I ,
directly from the Berkovich curve Can, the analytification of C. Some general
properties of the overfields will be seen, showing that this local–global principle
has good algebraic attributes as well. We will present some explicit examples of
these fields Fi.

In Lecture II, a connection between rank one valuations and points of Can was
presented. Building up on that, we will prove a second local–global principle,
which is of more classical nature: the overfields will now be completions of F
with respect to those rank one valuations. We stress that the completions of F
appearing here are not necessarily discrete.

If time allows it, we will discuss the relationship with local–global principles
where the family (Fi)i∈I consists of only discrete completions of F .

As a non-trivial consequence of these local–global principles, results on the u-
invariant of F can be obtained. A particular case of this is that u(Qp(T )) = 8
when p 6= 2, proven in [12] and [20] through local–global principles, and more
generally in [32] via different methods.

The results here generalize those of Harbater, Hartmann and Krashen’s [20].

References: [12], [20], [32], [35], [37].

3.13. Bounded symbol lengths for function fields over p-adic fields and
number fields. (R. Parimala). We state theorems on the finiteness of symbol
lengths for function fields of p-adic curves. We sketch a proof of a theorem of
Saltman that every element in the 2-torsion part of the Brauer group of the function
field of a p-adic curve, where p 6= 2, is represented by a biquaternion algebra. This
leads to the observation that the symbol length in H2 is 2. One has also symbol
length 1 for H3, and together this leads to the finiteness of the u-invariant. We
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shall also describe some results concerning function fields of curves over number
fields and discuss some open questions in this direction.

3.14. Arithmetic of homogeneous spaces (D. Izquierdo). In this final lec-
ture, we will introduce homogeneous spaces, which constitute a vast and interesting
generalization of equations of the form q = a with q a quadratic form. We will see
how their rational points over number fields behave by introducing the Brauer-
Manin obstruction and by discussing Sansuc’s and Borovoi’s theorems. We will
finally see that such tools can be generalized to semi-global fields and to Laurent
series fields.

References: [45], [6], [11], [15], [16], [10], [26], [28].

3.15. The Pythagoras number of function fields (N. Daans). The Pythago-
ras number of a field K is the smallest natural number n such that every sum of
squares of elements of K is a sum of n squares of elements of K, or ∞, if such
a natural number does not exist. Let us denote the Pythagoras number of K by
p(K). Any non-zero natural number is the Pythagoras number of some field [24].
While computing the precise value of the Pythagoras number of a given field can
in general be a very subtle problem, we can for a large class of naturally occurring
fields bound the Pythagoras number: when K is an extension of Q or R of finite
transcendence degree, then its Pythagoras number is known to grow at most ex-
ponentially as a function of the transcendence degree. On the other hand, very
little is known about the behaviour of the Pythagoras number under general field
extensions, in particular how quickly and freely the Pythagoras number can grow.
For example, we do not know whether, when p(K) is finite, then also p(K(X)) is
finite, where K(X) is a rational function field over K. In this talk, I will introduce
the Pythagoras number of fields and share basic examples and observations. I will
give a rough idea of why we can give bounds for the Pythagoras number for exten-
sions of Q or R only depending on the transcendence degree. The main focus will
be on recent work together with Becher, Grimm, Manzano-Flores and Zaninelli [4],
where it is shown that, if p(K(X)) = 2, then p(K(X, Y )) ≤ 8. Crucial ingredients
for this last result are Mehmeti’s local-global principle [35] as discussed in talk
3.10, and a theorem of L. Bröcker which relates the property that p(K(X)) = 2
for a field K to the existence of a certain henselian valuation on K [7].

4. Special talks

We will have two special talks during the summer school by two of our partici-
pants.

4.1. R-equivalence on adjoint groups (Archita Mondal, IIT Bombay).
Let E be a field and X be an irreducible algebraic variety over E. Let X(E)
denote the group of E rational points of X. Y. Manin introduced the notion of
rational equivalence on X(E), and more generally on a variety defined over a field.



ALGAR 2023 9

The set of equivalence classes for this relation is denoted by X(E)/R and has
a natural group structure. Later J.-L. Colliot-Thélène and J.J. Sansuc studied
R-equivalence in the category of linear algebraic groups.

Now let G be a connected linear algebraic group. It is a birational invariant of G,
and the triviality of G(E)/R is closely related to the rationality of the underlying
group variety given by G over E.

Let F be a field of characteristic different from 2 and with virtual cohomological
dimension 2 and let G be a semi-simple adjoint classical group defined over F . We
are interested in the triviality of G(F )/R. This is a joint work with Prof. Preeti
Raman.

Reference: [1]

4.2. Universal quadratic forms over p-adic and number fields (Yong Hu,
Southern University of Science and Technology, Shenzen). Let k and n
be positive integers and f ∈ Z[x1, . . . , xn] an integral quadratic form. We say that
f is k-universal if for every integral quadratic form in k variables g ∈ Z[y1, ..., yk],
there exist linear forms l1, . . . , ln ∈ Z[y1, ..., yk] such that f(l1, ..., ln) = g. In
this talk, I will report some recent progress on the classification of k-universal
quadratic forms over p-adic fields and the local-global principle for k-universality
over number fields. This is based on joint works with Zilong He and Fei Xu.

References: [21],[22],[23]

4.3. A local-global principle for rational function fields (Marco Zaninelli,
University of Antwerp). Let K be a field of characteristic different from 2.
Under certain assumptions on K, it is possible to obtain a local-global principle
for Pfister forms over the rational function field K(X) by using classic tools from
quadratic form theory, such as Milnor’s Exact Sequence and Springer’s Theorem
for complete non-dyadic valued fields. In particular, we assume the presence of a
local-global principle for Pfister forms over F for any finite field extension F/K;
this holds for example when K is a global field and when K = K0((t)) for a
global field K0, in which cases classic local-global principles for sums of squares
are retrieved via a simple argument.
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rationnels, Trans. Amer. Math. Soc 368(6) (2016).
[12] J.-L. Colliot-Thélène, R. Parimala, and V. Suresh, Patching and local-global principles for

homogeneous spaces over function fields of p-adic curves, Comment. Math. Helv. 87 (2012),
no. 4, 1011–1033.

[13] M.A. Elomary and J.-P. Tignol, Springer’s theorem for tame quadratic forms over Henselian
fields, Mathematische Zeitschrift 269 (2011), 309-323.

[14] D. Harari, Galois Cohomology and Class Field Theory, Universitext, Springer, 2020.
[15] D. Harari, C. Scheiderer, and T. Szamuely, Weak approximation for tori over p-adic function

fields, Internat. Math. Res. Notices 2015 (2015).
[16] D. Harari and T. Szamuely, Local-global questions for tori over p-adic function fields, J.

Algebraic Geom. 25(3) (2016).
[17] D. Harbater, Patching and Galois theory, Galois groups and fundamental groups, Math. Sci.

Res. Inst. Publ., vol. 41, Cambridge Univ. Press, Cambridge, 2003, pp. 313–424.
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