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1. Content description

Central simple algebras over fields and the Brauer group of a field are a classical
topic of study in algebra and number theory. Their theory was developed in the
1920s, based on earlier study of division rings by Wedderburn and Dickson. The
Brauer group of a field classifies finite-dimensional central division algebras over
the field up to isomorphism. The earliest general discoveries on the Brauer group
comprise the fact that the Brauer group of a finite field or the function field of a
curve over C are trivial, as well as the computation of the Brauer group of a local
or global number field.
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The study of central simple algebras over fields naturally extends to that of
Azumaya algebras over commutative rings. Also the concept of the Brauer group
extends to this setting. An even more general approach to the Brauer group is via
Galois (and étale) cohomology. In this way one comes naturally to the notion of
the Brauer group of a scheme.

On a more concrete level, the easiest examples of central simple (or Azumaya)
algebras other than matrix algebras are quaternion algebras. Their study provides
a natural link to quadratic form theory.

In this year’s summer school, we will explore on the one hand the different ways
to look at the Brauer group and the algebraic objects which are classified by it, and
on the other hand we want to provide an introduction to the various ways in which
the Brauer group can be applied to describe obstructions for certain varieties to
show that they are not rational.

In one thread of lectures, Nicolas Garrel will provide a conceptual approach
to the theory of Azumaya algebras over commutative rings and central simple
algebras over fields, and hence to the definition of the Brauer group.

Julian Lyczak will discuss how Brauer groups are used to answer questions on
the confluence of number theory and algebraic geometry.

Anne Quéguiner-Mathieu will shed a light on the ambiguous role of tensor prod-
ucts of quaternion algebras in the context of the 2-torsion part of the Brauer group
of a field and the crucial difference in looking at central simple algebras up to iso-
morphism or up to Brauer equivalence.

Federico Scavia will present one of the first examples of a 3-dimensional unira-
tional variety over C which is not rational, due to Artin and Mumford. The proof
uses the unramified Brauer group as a crucial ingredient.

Throughout the summer school, we assume fluency with basic algebraic struc-
tures covered in most bachelor’s programmes, and some familiarity with the fol-
lowing concepts:

• Tensor products of modules and algebras over commutative rings [7]
• Projective modules [7]
• Quaternion algebras – [5, Chap. 1]
• Central simple algebras – [5, Sections 2.1-2.4]
• Discrete valuations – [5, Appendix A.6]

2. Introductory days

The first two days, Thursday 22 and Friday 23 August, will give an introduction
in the form of exercise workshops. We will solve exercises training the basic con-
cepts of central simple algebras, quaternion algebras, tensor producs, projective
modules and discrete valuations.
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3. Main talks

3.1. The Hasse principle (Julian Lyczak). We consider the question of how
to determine if a system of polynomial equations has a solution over Q. Answering
this question is in general very hard, but there are techniques which sometimes
prove that there cannot be any solutions. For instance, the existence of a solu-
tion over Q implies the existence of local solutions. Local solutions are relatively
easily understood (for example through Hensel’s lemma) and if there are no local
solutions then there cannot be a rational solution.

We will introduce the Hasse principle, which captures the idea that the converse
also can hold: the existence of local solutions implies the existence of a rational
solution.

We will discuss some postive results, such as the Hasse–Minkowski theorem,
which states that the Hasse principle does hold for quadratic equations. We will
then see that the Hasse principle can fail if one moves to systems with more
equations or to equations of higher degree, and we highlight the role that quadratic
reciprocity often plays in these cases.

3.2. Morita theory (Nicolas Garrel). The goal of this lecture is to introduce
Azumaya algebras and the Brauer group of a commutative ring R, such that they
emerge as naturally as possible from a minimal framework. The central context
is that of a category in which the objects are the R-algebras and the morphisms
from A to B are the A-B-bimodules. We call this the Morita category.

Then Morita equivalences between R-algebras are just the isomorphisms in this
category, and the Brauer group of R is the group of those isomorphism classes
which are invertible with respect to the tensor product. We also introduce the
Picard group of R as the automorphism group of R itself.

3.3. Rationality and the unramified Brauer group (Federico Scavia). The
simplest algebraic varieties are rational varieties, that is, those which are closest
to projective space. In this lecture, we first define various degrees of rationality of
varieties: rational, stably rational, and unirational. We state the classical results
proving that these notions are not equivalent to each other in general, and in
particular we recall the Artin–Mumford example: the first example of a unirational
non-stably rational complex variety [3].

Let X be a complex variety, with function field K/C. We define the unramified
Brauer group of K/C as the subgroup of the Brauer group of K consisting of the
Brauer classes with trivial residue at every discrete valuation ring C ⊂ A ⊂ K
with fraction field K. If X is stably rational, the unramified Brauer group of K is
trivial, that is, the non-vanishing of the unramified Brauer group is an obstruction
to stable rationality. We give a formula to compute residues, but take the existence
of residue maps as a given: we will return to this in Lecture 3.9.
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3.4. Azumaya algebras (Nicolas Garrel). In this lecture we retrieve classical
properties of Azumaya algebras over a commutative ring R from our abstract
definition, relating it to other possible definitions in the process.

For instance, we prove that the inverse Brauer class of an Azumaya algebra A
is given by the class of its opposite algebra Aop. We describe the ideals and the
center of A and characterize Azumaya algebras as being central and separable. We
also give the criterion that A is Azumaya if Ap is a central simple algebras for all
p ∈ Spec(R).

To emphasize how the theory becomes more subtle over a commutative ring R
compared to the situation where R is a field, we show that the classical Skolem-
Noether theorem has the Picard group of R as an obstruction.

3.5. The Brauer–Manin obstruction (Julian Lyczak). We will change the
problem from Lecture 3.1 into a geometric one, by considering varieties: the geo-
metric object described by a system of polynomial equations.

Using the notion of unramified Brauer groups and residue maps, we will give
explicit examples of elements in Brauer groups of varieties.

In this geometric terminology we will rephrase rational solutions and local solu-
tions from the previous lecture into rational points and adelic points. We will show
how the set of rational points embeds into the set of adelic points. We will de-
scribe the Brauer–Manin obstruction, which can explain why there are no rational
points, even if there are adelic points.

3.6. The Artin–Mumford example (Federico Scavia). This lecture is de-
voted to the proof of the unirationality and stable irrationality of the Artin–
Mumford example. We follow the proof of Colliot-Thélène and Ojanguren [4].
Let X be a conic bundle over complex projective plane, that is, the function field
of X is isomorphic to the function field of a conic over C(x, y). We first give
sufficient conditions for the unirationality of X and, most importantly, for the
non-vanishing of the unramified Brauer group of the function field of X. Then, by
explicit residue calculations, we show that these conditions are satisfied when X
is the Artin–Mumford example.

3.7. Descent and cohomology (Nicolas Garrel). This lecture serves as a con-
necting point with the other courses, where the Brauer group has a more coho-
mological flavour. In order to do so, we introduce the technique of faithfully flat
descent for modules and algebras, and show that Galois descent is a special case of
that. We then explain how Azumaya algebras are the descents of endomorphism
algebras of finite projective modules (the equivalent of matrix algebras over fields),
and how the Brauer group embeds into the second cohomology group of the base
ring. We also discuss the difference between the Brauer group and the torsion
subgroup of this cohomology group.
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3.8. Milnor K-theory and the Brauer group (Anne Quéguiner-Mathieu).
Let F be a field of characteristic different from 2. In 1970, Milnor published his
famous paper entitled Algebraic K-theory and quadratic forms [11]. Even though it
is not formally stated in this way, the paper suggests the existence, for any field F of
characteristic different from 2, of a commutative triangle of isomorphisms relating
three graded rings, namely Milnor’s K-theory modulo 2 defined by generators and
relations, Galois cohomology with Z/2Z-coefficients, and the graded Witt ring,
related to quadratic form theory. This conjecture was proved by Voevodsky [16]
in 2003 and Orlov-Vishik-Voevodsky [12] in 2007.

In this lecture, we will study in details the degree 2 part of this triangle, and
more specifically the relation between Milnor’s K-theory modulo 2 and Galois
cohomology with coefficients in Z/2Z in degree 2. Since the second Galois coho-
mology group H2(F,Z/2Z) is isomorphic to the 2-torsion part of the Brauer group,
the result, which was originally proved by Merkurjev [10], provides a description
by generators and relations of the subgroup of the Brauer group which consists
of Brauer classes of order 2. As we will explain, it leads to the observation that
a central simple algebra of exponent 2 is always Brauer equivalent to a tensor
product of quaternion algebras.

3.9. Construction of the residue maps (Federico Scavia). In Lecture 3.3,
we defined the unramified Brauer group of a function field as the intersection of
the kernels of certain residue maps. We gave a formula to compute the residue
maps, but the existence of these maps was left as a black box. This lecture is
devoted to sketching a definition of the residue maps. We begin with necessary
preliminaries in group cohomology and Galois cohomology. We then construct the
residue map for fields of Laurent series, and then use this to construct residue
maps for function fields. When the ground field contains enough roots of unity,
we recover the explicit formula used in Lecture 3.3.

3.10. The Brauer group in arithmetic geometry (Julian Lyczak). We will
introduce some common techniques from the literature to compute the Brauer
group and find explicit representations of its elements. We will work through some
examples and use the Brauer–Manin obstruction to show that some equations do
not admit rational solutions.

We give a brief overview of the leading conjectures in the area of arithmetic
geometry, which show that understanding the Brauer–Manin obstruction is cru-
cial for varieties which are geometrically not too complicated, but that for more
complex varieties one does need additional techniques.

3.11. Indecomposable algebras (Anne Quéguiner-Mathieu). As in Lec-
ture 3.8, we work over a base field F of characteristic different from 2. An F -
central simple algebra D of degree 2 is isomorphic to a quaternion algebra. More
precisely, given a quadratic subfield F (

√
a) ⊂ D, one has D ' (a, x)F for some

x ∈ F×. By a classical theorem due to Albert [1, Thm. XI.9], a similar result
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holds in degree 4: Any central simple F -algebra D of degree 4 and exponent 2
contains a bi-quadratic commutative subfield F (

√
a,
√
b) and is isomorphic to a

tensor product of two quaternion algebras (a, x) ⊗ (b, y) for some x and y ∈ F×.
The situation is quite different in degree 8. Rowen [15] proved that a degree 8
and exponent 2 central simple algebra D over F always contains a tri-quadratic
subfield F (

√
a,
√
b,
√
c), but Tignol noticed that it generally does not admit a de-

composition as (a, x)⊗ (b, y)⊗ (c, z) for some x, y, z ∈ F×. In 1979, elaborating on
this example, Amitsur, Rowen and Tignol [2] constructed an example of a central
simple algebra D of degree 8 and exponent 2 which is not isomorphic to a tensor
product of three quaternion algebras. This construction, which is the main topic
of this lecture, has proved useful to obtain various counterexamples in the theory
of quadratic forms and algebras with involution.

4. Special talks

4.1. The Brauer dimension of a field (Shilpi Mandal, Emory University).
Let K be a field. Recall that the index of a central simple algebra A over K is the
degree (i.e. the square root of the dimension) of the unique division algebra over
K that is equivalent to A, and that the order of the class of A in Br(K) is called
its period. We denote them by ind(A) and per(A). It is well-known that per(A)
divides ind(A), and that conversely ind(A) divides per(A)d, for some d ∈ N; see
[5, Section 4.5].

In the spirit of [13], we define the following for a field K. The Brauer l-dimension
of K for a prime number l, denoted by Brldim(K), is the smallest d ∈ N ∪ {∞}
such that for every finite field extension L/K and every central simple L-algebra
A of period a power of l, we have that ind(A) divides per(A)d. The supremum
on Brldim(K) where l runs over all primes is denoted by Brdim(K) and called the
Brauer dimension of K.

If Br(K) = 0, then we take the convention that d = 0. This holds in partic-
ular when K is algebraically closed, but also when K is a function field over an
algebraically closed field, due to a theorem of Tsen [5, Theorem 6.2.8], or more
generally any field of cohomological dimension 1.

If K is a number field or a local field (a finite extension of the field of p-adic
numbers Qp, for some prime number p), then classical results from class field theory
tell us that Brdim(K) = 1, see [14, § 18.6].

It is expected that the growth of this invariant under a field extension is bounded
by the transcendence degree. Some recent works in this area include that of
Lieblich [8], Harbater-Hartmann-Krashen [6] for K a complete discretely valued
field, in the good characteristic case. In the bad characteristic case, for such fields
K, Parimala-Suresh have given some bounds in [13].

In my research, I am looking at the relation between the Brauer dimensions of
a complete non-archimedean valued field and of its residue field.
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4.2. Orders in positive definite quaternion algebras (Jakub Krásensky,
TU Prague). Quaternion orders are nice discrete subrings of quaternion alge-
bras, and they have many applications. For example, the simplest known proof of
Lagrange’s four-square theorem uses the order of so-called Hurwitz quaternions.
This is the subset of (Hamilton) quaternions generated as Z-module by 1, i, j
and (1 + i + j + k)/2. The ring of Hurwitz quaternions has many nice properties
which are not shared by the seemingly more natural set of integral quaternions
Z + Zi + Zj + Zk. For example, it admits a certain kind of unique factorisation.
In this talk, we will have a closer look at orders which can be embedded into the
skew-field of Hamilton quaternions; we introduce some of their basic properties and
look how they can be used to prove certain analogues of the four-square theorem.
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