
Verification of Concurrent Programs under
Weakly Consistent Models

Ahmed Bouajjani
Université Paris Cité

CONCUR, Antwerp, Belgium, 2023

Parosh Aziz Abdulla

Mohamed Faouzi Atig

Roland Meyer

Constantin Enea Sidi Mohammed Beilahi

Egor Derevenetc

Sebastian Burckhardt Madan Musuvathi

Tuan Phong Ngo

Application
Application

Clients

Storage
System

x:=2 x:=5

read(x,?)
read(x,?)

read(x,?)
read(x,?)

Interactions with a memory

What are the expected
observable behaviors?

read(x,?)
read(x,?)

read(x,?)

x = 0

x:=2 x:=5

read(x,?)
read(x,?)

read(x,?)
read(x,?)

What are the expected
observable behaviors?

read(x,?)
read(x,?)

read(x,?)

x = 0

- the current set of visible actions by each process, and
- the order in which actions are seen by each process

Returned values by read actions depend on:

Interactions with a memory: visibility

x:=2 x:=5

read(x,?)
read(x,?)

read(x,?)
read(x,?)

read(x,?)
read(x,?)

Strong consistency:
- updates are visible to all participants without delay
- updates are visible in the same order to everybody

read(x,?)

x = 0

What are the expected
observable behaviors?

Interactions with a memory: Strong Consistency

x:=2 x:=5

read(x,5)
read(x,5)

read(x,5)
read(x,2)

What are the expected
observable behaviors?

read(x,5)
read(x,2)

Strong consistency:
- updates are visible to all participants without delay
- updates are visible in the same order to everybody

x = 2

read(x,2)

Interactions with a memory: Strong Consistency

x:=2 x:=5

read(x,?)
read(x,?)

read(x,?)
read(x,?)

x = 0

x = 0 x = 0

x = 0

Replicas/
Caches

mechanisms

Interactions with a memory

x:=2 x:=5

read(x,2)
read(x,?)

read(x,5)
read(x,?)

x = 5

x = 2 x = 5

x = 2

Weak consistency:
- participants may see different sets of updates
- updates may be visible in different orders to participants

Interactions with a memory
Replicas/
Caches

mechanisms

x:=2 x:=5

read(x,2)
read(x,5)

read(x,5)
read(x,2)

x = 2

x = 2 x = 5

x = 5

Weak consistency:
- participants may see different sets of updates
- updates may be visible in different orders to participants

Interactions with a memory
Replicas/
Caches

mechanisms

x:=2 x:=5

read(x,2)
read(x,5)

read(x,5)
read(x,2)

x = 2

x = 2 x = 5

x = 5

Weak consistency:
- participants may see different sets of updates
- updates may be visible in different orders to participants

Interactions with a memory

A variety of consistency models

Replicas/
Caches

mechanisms

Sequential Consistency
Lamport 79

Interleaving of actions of the different processes
Operational semantics:

Sequential Consistency
Lamport 79

Interleaving of actions of the different processes
Operational semantics:

Axiomatic semantics:
- rf (read-from): write is the source of a read
- so (store-order): total order between updates
- po (program-order): order between operations in a same process

- cf (conflict): reads happen-before conflicting writes

hb (happen-before) = union of rf, so, po, and cf, is acyclic

w(x, u) — so —> w(x, v) w(x, u) — rf —> r(x, u)
r(x, u) — cf —> w(x, v)

y:=1 x:=1x=0
read(x,?) read(y,?)y=0

Sequential Consistency
Lamport 79

- updates are totally ordered => visible in the same order to all proc.
- program order is respected => e.g., reads cannot overtake writes

y:=1 x:=1x=0
read(x,?) read(y,?)y=0

Sequential Consistency

Possible read values:
(0, 1), (1, 0), (1, 1)

- updates are totally ordered => visible in the same order to all proc.
- program order is respected => e.g., reads cannot overtake writes

Lamport 79

y:=1 x:=1x=0
read(x,?) read(y,?)y=0

Sequential Consistency

Possible read values:
(0, 1), (1, 0), (1, 1)

if x=0 then goto CC if y=0 then goto CC

Mutual ExclusionLamport 79

- updates are totally ordered => visible in the same order to all proc.
- program order is respected => e.g., reads cannot overtake writes

read(x,0)

x=y=0

write(x,1)

read(y,0)
cfpo

read(x,0) write (x,1) read(y,0)

Relaxing order constraints

Sequential Consistency

read(x,0) write (x,1) read(y,0)

read(x,0)

x=y=0

write(x,1)

read(y,0)
cfpo

read(x,0) read(y,0) write (x,1)

Relax the Program Order Constraints

Swap operations

Sequential Consistency

Relaxing order constraints

read(x,0) write (x,1) read(y,0)

read(x,0)

x=y=0

write(x,1)

read(y,0)
cfpo

read(x,0) read(y,0) write (x,1)
Swap operations

Execute in parallel
Fast execution of reads!

Relax the Program Order Constraints

Sequential Consistency

Relaxing order constraints

read(x,0) write (x,1) read(y,0)

read(x,0)

x=y=0

write(x,1)

read(y,0)
cfpo

read(x,0) read(y,0) write (x,1)
Swap operations

Execute in parallel
Fast execution of reads!

Relax the Program Order Constraints

Sequential Consistency

Reach the same state!

Relaxing order constraints

Weak Consistency Models

- Operational semantics: State machines + unbounded queues

- Complex program semantics

- Reordering of operations, unbounded forward/backward moves

TSO : Operational Model

• writes are sent to store buffers (one per process)
• writes are committed to memory at any time
• reads are from

• atomic read-writes executed when own buffer is empty
• fence = flush the buffer (simulated with atomic read-write)

- own store buffer if a value exists (last write to the variable)
- otherwise from the memory

P1

Pn

Store Buffers Memory

w(x,2) w(y,1) w(x,1)

……

w(y,2)

y:=1 x:=1

Total Store Ordering (TSO)

- updates are totally ordered => visible in the same order to all proc.,
- updates can be delayed => reads may overtake writes

x=0
read(x,?) read(y,?)y=0

FIFO
channel

y:=1 x:=1

Total Store Ordering (TSO)

x=0
read(x,?) read(y,?)y=0 x:=1y:=1

- updates are totally ordered => visible in the same order to all proc.,
- updates can be delayed => reads may overtake writes

y:=1 x:=1

Total Store Ordering (TSO)

x=0
read(x,0) read(y,0)y=0 x:=1y:=1

It is also possible to read (0, 0)

- updates are totally ordered => visible in the same order to all proc.,
- updates can be delayed => reads may overtake writes

y:=1 x:=1x=0
read(x,?) read(y,?)y=0

Possible read values:
(0, 1), (1, 0), (1, 1), (0, 0)

if x=0 then goto CC if y=0 then goto CC

Total Store Ordering (TSO)

Mutual Exclusion

- updates are totally ordered => visible in the same order to all proc.,
- updates can be delayed => reads may overtake writes

write(x,1) write(y,1)

read(y,0) read(x,0)

x=y=0

CS1 CS2

popo
cf cf

CS1 and CS2 ?

- Impossible under SC: Cyclic happen-before relation

TSO: Non SC Behaviors

rfrf
soso

write(x,1) write(y,1)

read(y,0) read(x,0)

x=y=0

CS1 CS2

popo

CS1 and CS2 ?

- Possible under TSO!
• writes are delayed: pending in store buffers
• reads get old values in the memory (0’s)

cf cf

- Impossible under SC: Cyclic happen-before relation

TSO: Non SC Behaviors

Avoiding Reordering: Fences

write(x,1) write(y,1)

read(y,0) read(x,0)

x=y=0

CS1 CS2
CS1 and CS2 ?

fence fence

• A fence forces flushing the store buffer
• => reaching CS1 and CS2 becomes impossible

po

po po

po

cf

cf

Avoiding Reordering: Fences

write(x,1) write(y,1)

read(y,0) read(x,0)

x=y=0

CS1 CS2
CS1 and CS2 ?

fence fence

• A fence forces flushing the store buffer
• => reaching CS1 and CS2 becomes impossible

po

po po

po

cf

cf

SC can be enforced: insert a fence after each write

Application

« Data »

Application
Clients

Communication
Network

(Storage syst., DB)

Reasoning under Weak Consistency

- Formal definition of consistency models
- Express constraints on the possible orders between operations

- Verify an application under a weak consistency model
Complex behaviors due to action reordering

- Verify a storage system/DB w.r.t. a consistency level
Complex implementations with synchronisation optimizations

Issues

- Operational semantics

Reasoning under Weak Consistency

- Formal definition of consistency models
- Express constraints on the possible orders between operations

- Verify an application under a weak consistency model
Complex behaviors due to action reordering

- Verify a storage system/DB w.r.t. a consistency level
Complex implementations with synchronisation optimizations

Issues

- Operational semantics

Reasoning under Weak Consistency

- Formal definition of consistency models
- Express constraints on the possible orders between operations

- Verify an application under a weak consistency model
Complex behaviors due to action reordering

- Verify a storage system/DB w.r.t. a consistency level
Complex implementations with synchronisation optimizations

Issues

- Operational semantics

- Decidability and complexity
Action reordering can lead to undecidability/high complexity

- Testing / Static Analysis
Coverage / Accuracy

Verifying Application Correctness (safety)
under Weak Consistency

Decidability?

Verifying Application Correctness (safety)
under Weak Consistency

Decidability?

- Reductions to reachability in Well Structured Systems
- Well quasi ordering on the state space
- Monotonicity of transition relation w.r.t to the WQO

[AKJT’96, FS ’01]

Verifying Application Correctness (safety)
under Weak Consistency

Decidability?

- Reductions to reachability in Well Structured Systems
- Well quasi ordering on the state space
- Monotonicity of transition relation w.r.t to the WQO

[AKJT’96, FS ’01]

- => TSO [Atig, B., Burkhardt, Musuvathi’10][Abdulla, Atig, B., Ngo’18]

- => TSO + persistency [Abdulla, Atig, B., Kumar, Saivasan’21]

- => other models [Lahav, Boker’20]

- => relaxations of TSO [Atig, B., Burkhardt, Musuvathi’12]

Verifying Application Correctness (safety)
under Weak Consistency

Undecidability

- TSO + writes overtake reads (speculative reads)
[Atig, B., Burkhardt, Musuvathi’10, 12]

- Power [Abdulla, Atig, B., Derevenetc, Leonardsson, Meyer’20]

- other models [Abdulla, Arora, Atig, Krishna’19]

From TSO programs to Lossy Channel Systems

From TSO programs to Lossy Channel Systems

But store buffers are not lossy !

An example of TSO program

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0
> >

x=0

y=0
P1

TSO store buffer of P1

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=0

y=0
P1 w(x,1)w(y,1)w(x,2)

TSO store buffer of P1

An example of TSO program

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=1

y=0
P1 w(x,1)w(y,1)w(x,2)

TSO store buffer of P1

An example of TSO program

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=1

y=1
P1 w(x,1)w(y,1)w(x,2)

TSO store buffer of P1

An example of TSO program

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=2

y=1
P1 w(x,1)w(y,1)w(x,2)

TSO store buffer of P1

An example of TSO program

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=2

y=1
P1 w(x,1)w(y,1)w(x,2)

TSO store buffer of P1

An example of TSO program

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=2

y=1
P1 w(x,1)w(y,1)w(x,2)

X

Deadlock under the TSO semantics

TSO store buffer of P1

An example of TSO program

TSO Store Buffers —> Lossy Channels ?

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=0

y=0
P1 w(x,1)w(y,1)w(x,2)

Lossy Fifo Channel

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=1

y=0
P1 w(x,1)w(y,1)w(x,2)

Lossy Fifo Channel

TSO Store Buffers —> Lossy Channels ?

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=1

y=0
P1 w(x,1)w(y,1)w(x,2)

Lossy Fifo Channel

TSO Store Buffers —> Lossy Channels ?

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=2

y=0
P1 w(x,1)w(y,1)w(x,2)

Lossy Fifo Channel

TSO Store Buffers —> Lossy Channels ?

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=2

y=0
P1 w(x,1)w(y,1)w(x,2)

Lossy Fifo Channel

TSO Store Buffers —> Lossy Channels ?

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>
>

x=2

y=0
P1 w(x,1)w(y,1)w(x,2)

Lossy Fifo Channel

Unsound simulation of TSO!

TSO Store Buffers —> Lossy Channels ?

Store Memory Snapshots

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0
> >

x=0

y=0
P1

Future Snapshots of the Memory

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>
>

x=0

y=0
P1

x=1
y=0

Future Snapshots of the Memory

Store Memory Snapshots

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=0

y=0
P1

x=1
y=0

x=1
y=1

Future Snapshots of the Memory

Store Memory Snapshots

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=0

y=0
P1

x=1
y=0

x=1
y=1

x=2
y=1

Future Snapshots of the Memory

Store Memory Snapshots

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=1

y=0
P1

x=1
y=0

x=1
y=1

x=2
y=1

Future Snapshots of the Memory

Store Memory Snapshots

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=1

y=0
P1

x=1
y=0

x=1
y=1

x=2
y=1

Future Snapshots of the Memory
+ Lossyness

Store Memory Snapshots with Losses

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=2

y=1
P1

x=1
y=0

x=1
y=1

x=2
y=1

Future Snapshots of the Memory
+ Lossyness

Store Memory Snapshots with Losses

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=2

y=1
P1

x=1
y=0

x=1
y=1

x=2
y=1

+ Lossyness
Future Snapshots of the Memory

Store Memory Snapshots with Losses

w(x,1)

w(x,2)
w(y,1)

P1 P2
r(x,2)
r(y,0)

x=y=0

>

>

x=2

y=1
P1

x=1
y=0

x=1
y=1

x=2
y=1

Future Snapshots of the Memory

X

+ Lossyness

Store Memory Snapshots with Losses

Valid Simulation of TSO

From TSO to Lossy Channel Systems

- 1-channel machine per process + composition

From TSO to Lossy Channel Systems

- 1-channel machine per process + composition

- Each process:
• write: puts a new memory state at the tail of the channel
• read: checks the channel, then the memory
• memory update: moves the head of the channel to the memory

From TSO to Lossy Channel Systems

- 1-channel machine per process + composition

- Each process:
• write: puts a new memory state at the tail of the channel
• read: checks the channel, then the memory
• memory update: moves the head of the channel to the memory

Problem: Interferences between processes ?
Processes must agree on the same order of memory updates

From TSO to Lossy Channel Systems

- 1-channel machine per process + composition

- Each process:
• write: puts a new memory state at the tail of the channel
• read: checks the channel, then the memory
• memory update: moves the head of the channel to the memory

Problem: Interferences between processes ?

• guesses writes by other processes; put them in the channel
Processes must agree on the same order of memory updates

- Validation of the guesses by composition:
• transitions are labelled by write operations + process id
• machines are synchronized on these actions

Finite number
of processes

Reachability for TSO programs

Thm: The control state reachability problem under TSO is reducible
to the reachability problem in lossy channel systems, and vice-versa.

[Atig, B., Burckhardt, Musuvathi, 2010]

Reachability for TSO programs

Thm: The control state reachability problem under TSO is reducible
to the reachability problem in lossy channel systems, and vice-versa.

Coro: The control state reachability problem under TSO is decidable,
and it is non primitive recursive.

using [Abdulla & Jonsson1993, Abdulla et al. 1996,
Finkel & Schnoebelen 2001, Schnoebelen 2001]

[Atig, B., Burckhardt, Musuvathi, 2010]

Well …

The complexity is high!

Well …

The complexity is high!
… but this is not the main/only problem

Well …

The proposed encoding of TSO programs as LCS’s

- Can not be extended to the parametric case

- Is not practical:
 it requires handling memory snapshots

 it manipulates process id’s

The complexity is high!
… but this is not the main/only problem

Well …

=> We need to change our angle of view…

The proposed encoding of TSO programs as LCS’s

- Can not be extended to the parametric case

 it requires handling memory snapshots

 it manipulates process id’s

The complexity is high!
… but this is not the main/only problem

- Is not practical:

Dual TSO

r(x,0) r(y,1) r(x,1) r(y,3)

r(y,1) r(y,3) r(x,2)

x=2

y=3

P1

Pn

… …

• Store Buffers —> Load Buffers
• Writes immediately update the Memory
• Reads are sent by the memory to processes
• Reads can be skipped by processes (Load Buffers are lossy)
• => One sequence of memory updates (order of writes)
• => Buffers contain expected reads by processes
• => Buffers represent a “(sub)history” of the memory updates

[Abdulla, Atig, B, Ngo, 2016]

Dual TSO
• Store Buffers —> Load Buffers
• Writes immediately update the Memory
• Reads are sent by the memory to processes
• Reads can be skipped by processes (Load Buffers are lossy)
• => One sequence of memory updates (order of writes)
• => Buffers contain expected reads by processes
• => Buffers represent a “(sub)history” of the memory updates

r(x,0) r(y,1) r(x,1) r(y,3)

r(y,1) r(y,3) r(x,2)

x=2

y=3

P1

Pn

… …

Dual TSO: Semantics

x=0

y=0

P1

P2

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2
> >

Dual TSO: Semantics

x=0

y=0

P1

P2

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2
> >

r(x,0)

r(y,0)

Dual TSO: Semantics

x=1

y=1

P1

P2

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

> >

r(x,0)

r(y,0)

Dual TSO: Semantics

x=1

y=1

P1

P2

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

> >

r(x,0)

r(y,0)

Dual TSO ~ TSO

Thm: The Dual TSO semantics is equivalent to the TSO
semantics with respect to the reachability problem.

Comparing the two encodings

- No memory snapshot
- No reference to Process Id’s
- Applicable to Parametric Verification
- Implementable verification algorithm

Dual TSO:

Robustness against Weak Consistency
Given
- An application program P
- A consistency model M1 and a weaker model M2

Check if [P](M) = [P](M’)
The sets of visible behaviors of P

under M and M’ are equal

Robustness against Weak Consistency

Given
- A Safety property ∑
- An abstraction P# of P, i.e., [P](M) subset of [P#](M)

[P#](M) = [P#](M’)[P#](M) |=
<latexit sha1_base64="s3U4Jsm/uPqI5nh/8Q18T+t7c2Y=">AAACzHicjVHLSsNAFD2Nr1pfVZdugq3gKiQVX7uiG1dSwT6kLZKk0xqaF5OJUEq3/oBb/S7xD/QvvDOm4gPRCUnunHvOmbn3OrHvJcI0n3PazOzc/EJ+sbC0vLK6VlzfaCRRyl1WdyM/4i3HTpjvhawuPOGzVsyZHTg+azrDU5lv3jKeeFF4KUYx6wb2IPT6nmsLgq7KnSDqMT8pXxdLpmGqpZvGvmkdH1j6B2JlQQnZqkXFJ3TQQwQXKQIwhBAU+7CR0NOGBRMxYV2MCeMUeSrPMEGBtCmxGDFsQof0HdCunaEh7aVnotQuneLTy0mpY4c0EfE4xfI0XeVT5SzR37zHylPebUR/J/MKCBW4IfQv3ZT5X52sRaCPI1WDRzXFCpHVuZlLqroib65/qkqQQ0yYjHuU5xS7Sjnts640iapd9tZW+RfFlKjcuxk3xau8JQ3Y+j7On0GjYlh7RuWiUqqeZKPOYwvb2KV5HqKKM9RQJ+8A93jAo3auCW2sTd6pWi7TbOLL0u7eADudkpU=</latexit>

⌃<latexit sha1_base64="ZFVKl+KnBqWWt77M38hg5RHmZ04=">AAACy3icjVHLSsNAFD2Nr1pfVZdugq3gKiQVX7uiGzdCRfuAtkiSjnVoXiQToVaX/oBb/S/xD/QvvDOm4gPRCUnOnHvPmbn3OpHHE2GazzltYnJqeiY/W5ibX1hcKi6vNJIwjV1Wd0MvjFuOnTCPB6wuuPBYK4qZ7TseazqDQxlvXrE44WFwJoYR6/p2P+AX3LUFUa1y55T3fbt8XiyZhqmWbhrbprW/Y+kfjJWBErJVC4tP6KCHEC5S+GAIIAh7sJHQ04YFExFxXYyIiwlxFWe4RYG0KWUxyrCJHdC3T7t2xga0l56JUrt0ikdvTEodG6QJKS8mLE/TVTxVzpL9zXukPOXdhvR3Mi+fWIFLYv/SjTP/q5O1CFxgT9XAqaZIMbI6N3NJVVfkzfVPVQlyiIiTuEfxmLCrlOM+60qTqNplb20Vf1GZkpV7N8tN8SpvSQO2vo/zJ2hUDGvLqJxUStWDbNR5rGEdmzTPXVRxhBrqao73eMCjdqwl2rV2856q5TLNKr4s7e4NtQGR+A==</latexit>

[P](M’) ⌃<latexit sha1_base64="Bstc8WpAYAky3Y4OQolBN7guTtI=">AAACy3icjVHLTsMwEJyGVymvAkcuEQWJU5WWAxwruHBBKoI+pLZCTnCLRV5yHKRSOPIDXOG/EH8Af8HapAioEDhKMp6dWXt33dgXiXKcl5w1NT0zO5efLywsLi2vFFfXmkmUSo83vMiPZNtlCfdFyBtKKJ+3Y8lZ4Pq85V4d6njrmstEROGZGsa8F7BBKPrCY4qo9lb3VAwCtnVeLDllxyz7E1R+ghKyVY+Kz+jiAhE8pAjAEUIR9sGQ0NNBBQ5i4noYEScJCRPnuEOBvCmpOCkYsVf0HdCuk7Eh7XXOxLg9OsWnV5LTxjZ5ItJJwvo028RTk1mzv+UemZz6bkP6u1mugFiFS2L/8o2V//XpWhT62Dc1CKopNoyuzsuypKYr+ub2l6oUZYiJ0/iC4pKwZ5zjPtvGk5jadW+Zib8apWb13su0Kd70LWnAE+OcBM1qubJbrp5US7WDbNR5bGATOzTPPdRwhDoaZo4PeMSTdWwl1o11+yG1cplnHd+Wdf8OhI+R4w==</latexit>

|=
<latexit sha1_base64="PjiGW2HA5BpeejdW46rUUrlDbx0=">AAACzHicjVHLTsMwEJyGVymvAkcuES0SpyotBzhWcOGEikQfiFYocd0S4cRR4iBVVa/8AFf4LsQfwF+wNikCKgSOkoxnd8beXS8SfqIc5yVnzc0vLC7llwsrq2vrG8XNrVYi05jxJpNCxh3PTbjwQ95UvhK8E8XcDTzB297tiY6373ic+DK8UKOI9wJ3GPoDn7mKqMtyN5B9LpLydbHkVByz7E9Q/QlKyFZDFp/RRR8SDCkCcIRQhAVcJPRcoQoHEXE9jImLCfkmzjFBgbQpZXHKcIm9pe+QdlcZG9JeeyZGzegUQW9MSht7pJGUFxPWp9kmnhpnzf7mPTae+m4j+nuZV0Cswg2xf+mmmf/V6VoUBjgyNfhUU2QYXR3LXFLTFX1z+0tVihwi4jTuUzwmzIxy2mfbaBJTu+6ta+KvJlOzes+y3BRv+pY04JlxzoJWrVI9qNTOa6X6cTbqPHawi32a5yHqOEUDTfIO8IBHPFlnlrLG1uQj1cplmm18W9b9OwsrkoA=</latexit>

Given
- An application program P
- A consistency model M1 and a weaker model M2

Check if [P](M) = [P](M’)
The sets of visible behaviors of P

under M and M’ are equal

=> Preservation of safety properties:

Checking Robustness against TSO

What is observable?

- Reachable memory states
What is observable?

Checking Robustness against TSO

- => solving reachability under TSO
- Decidable problem, but highly complex
 [Atig, B., Burckhardt, Musuvathi, POPL’10]

- Reachable memory states
What is observable?

Checking Robustness against TSO

- Traces of computations (po + read-from + write-order)
- SC computation iff HB (= trace + cf) is acyclic

- => solving reachability under TSO
- Decidable problem, but highly complex
 [Atig, B., Burckhardt, Musuvathi, POPL’10]

- Reachable memory states
What is observable?

Checking Robustness against TSO

Traces[SC](P) = Traces[TSO](P)?

- Traces of computations (po + read-from + write-order)
- SC computation iff HB (= trace + cf) is acyclic

- => solving reachability under TSO
- Decidable problem, but highly complex
 [Atig, B., Burckhardt, Musuvathi, POPL’10]

- Reachable memory states
What is observable?

Checking Robustness against TSO

Traces[SC](P) = Traces[TSO](P)?

- Checking if a single computation is SC is possible
- How to verify that all computations are SC ?

- SC computation iff HB (= trace + cf) is acyclic

- => solving reachability under TSO
- Decidable problem, but highly complex
 [Atig, B., Burckhardt, Musuvathi, POPL’10]

- Reachable memory states
What is observable?

Checking Robustness against TSO

Traces[SC](P) = Traces[TSO](P)?
- Reduction to reachability under SC !
- (P/EXP)SPACE-complete (for fixed/arbitrary nb. of FSM’s)
 [B., Derevenetc, Meyer, ESOP’13]

- Traces of computations (po + read-from + write-order)

TSO: An SC violation

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2
> >

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

>
>

I[w(x,1)]

TSO: An SC violation

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

>

>

I[w(x,1)] r(y,0)

TSO: An SC violation

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

>
>

I[w(x,1)] r(y,0) w(y,1)

TSO: An SC violation

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

> >

r(x,0)I[w(x,1)] r(y,0) w(y,1)

TSO: An SC violation

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

> >

C[w(x,1)] (x=1, y=1)r(x,0)I[w(x,1)] r(y,0) w(y,1)

TSO: An SC violation

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

> >

C[w(x,1)] (x=1, y=1)r(x,0)I[w(x,1)] r(y,0) w(y,1)
cf cfpo

po

TSO: An SC violation

- Minimal (borderline) SC violation (in the # of order relaxations)
- Only one process is delaying writes (here P1) — pair of write-read
- Bad pattern: Cycle characterized by a pair W and R of one process

- W (and subsequent writes) are delayed to let R read some old value
- W and R are conflicting

w(x,1)

r(x,0)r(y,0)

w(y,1)

P1 P2

> >

C[w(x,1)] (x=1, y=1)r(x,0)I[w(x,1)] r(y,0) w(y,1)
cf cfpo

po

TSO: An SC violation

- W (and subsequent writes) are delayed to let R read some old value
- W and R are conflicting COMPLETE

- Minimal (borderline) SC violation (in the # of order relaxations)
- Only one process is delaying writes (here P1) — pair of write-read
- Bad pattern: Cycle characterized by a pair W and R of one process

Checking Robustness against TSO

Traces[SC](P) = Traces[TSO](P)?

- Reduction to reachability under SC !
- (P/EXP)SPACE-complete (for fixed/arbitrary nb. of FSM’s)
 [B., Derevenetc, Meyer, ESOP’13]

Intrumentation of P —> P’

- Guess the occurrence of W to delay
- Check the existence of a hb path reaching R
- If yes, go to a special state F

For each pair W, R

P is trace-robust iff F is not reachable in [P’](SC)

Robustness against Weak Consistency
Transactional models

- SER vs SI

- SER vs CC [Beillahi, B., Enea, CONCUR’19]

[Beillahi, B., Enea, CAV’19]

- SI vs PC and PC vs CC [Beillahi, B., Enea, ESOP’21]

Serializability (SER), Snapshot Isolation,
Causal Consistency (CC), Prefix Consistency, etc.

Robustness against Weak Consistency
Transactional models

- SER vs SI

- SER vs CC [Beillahi, B., Enea, CONCUR’19]

[Beillahi, B., Enea, CAV’19]

- SI vs PC and PC vs CC [Beillahi, B., Enea, ESOP’21]

Serializability (SER), Snapshot Isolation,
Causal Consistency (CC), Prefix Consistency, etc.

- Characterize what separate the two models
- Notion of borderline/minimal violation
- Finite number of patterns to track
- Efficient and precise static analysis techniques

Conclusion

- Safety verification: Decidability / complexity still open in many cases
- When decidable, the complexity is high

- Efficient upper/under approximate methods have been developed

- General frameworks for specifying consistency levels

- Composing systems with different consistency levels

- Verifying and enforcing robustness is an important problem

- Tuning consistency levels by need

Future work
- Liveness still needs to be investigated

[Abdulla, Atig, Godbole, Krishna, Vahanwala, 2023]

- Efficient verification techniques are needed
[B., Enea, Roman-Calvo, 2023]

(e.g., PO techniques …)

