
DEPARTMENT OF COMPUTER SCIENCE
20 MARCH 2023 PROFESSOR

JACO VAN DE POLAARHUS
UNIVERSITY

PLANNING AND GAMES

ENCODING IN SAT AND QBF

IRFANSHA SHAIK

JACO VAN DE POL

… AND QUANTUM CIRCUIT COMPILATION

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLAN

1. Motivating example: Quantum Circuit Layout Synthesis

2. Classical Planning / Bounded Model Checking (SAT)

3. Concise Encoding of Planning in QBF (Quantified Boolean Formulas)

 Path Compression

 Lifted Planning (almost first-order)

4. Concise Encoding of 2-player board games in QBF

 Tic-tac-toe, Hex, Breakthrough, Domineering

5. Validation of encodings with QBF certificates

2

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

INTRODUCTION – LAYOUT SYNTHESIS

 Optimal Layout Synthesis for Quantum Circuits as Classical Planning,
Irfansha Shaik and Jaco van de Pol. ICCAD’23 IEEE/ACM, San Francisco, 2023

 Quantum algorithms can solve some problems faster than classical algorithms

 Quantum Computers exist today … NISQ era

 Intermediate scale (limited number of qubits, limited connectivity)

 Noisy (decoherence, interference)

Circuit Optimization: minimize the number of gates / depth of circuit by rewriting the circuit

Layout Synthesis: Map “logical quantum circuit” to a “physical platform”

 Swap qubits around, to obey connectivity restrictions

 Every swap increases the noise, so minimize this!

3

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

A SMALL STEP IN THE “QUANTUM PIPELINE”

quantum
algorithm program high-level

circuit

low-level
circuitmappingquantum

computer

(compilation)

(register allocation) (optimization)

(layout synthesis)

4

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

QUBITS AND QUANTUM GATES (HEAVILY SIMPLIFIED)

 Qubits:

 Basic vectors: |0⟩ = and |1⟩ =

 Arbitrary qubit: 𝜓 𝛼 0 𝛽 1 with |𝛼| |𝛽| 1

 1 qubit Quantum Gates: 𝑰,𝑿,𝒀,𝒁,𝑯,𝑺,𝑻,𝑻 , …

Identity = 𝐼 = 1 0
0 1 𝐼 𝑥 𝑥

 NOT = 𝑋 = 0 1
1 0 𝑁𝑂𝑇 𝑥 𝑥

5

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

MULTI-QUBIT QUANTUM GATES (CLASSICAL VIEW)

 Multiple qubits: 𝜙𝜓 𝜙 ⊗ 𝜓 (tensor product)

 |00⟩ = , |01⟩ = , |10⟩ = and |11⟩ =

𝑛 qubits: 2 -dimensional Hilbert space

Binary operators:

 CNOT = CX =

1 0 0 0
0 1 0 0
0 0 𝟎 𝟏
0 0 𝟏 𝟎

 𝐶𝑁𝑂𝑇 𝑥, 𝑦 𝑥, 𝑥⨁𝑦

 SWAP =

1 0 0 0
0 𝟎 𝟏 0
0 𝟏 0 0
0 0 0 1

SWAP 𝑥, 𝑦 𝑦, 𝑥

6

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LAYOUT SYNTHESIS (FROM GITHUB.COM/UCLA-VAST/OLSQ)

• All gates (H,X,T) are unary

except binary CNOT gate:

Requires full connectivity

 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞

 What if the target only has

 𝑞 , 𝑞 , 𝑞 , 𝑞 ?

 1 SWAP by 3 CNOT gates

7

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LAYOUT SYNTHESIS: ADDER CIRCUIT

 First input: a (logical) quantum circuit

 Note: Need a square: 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞
 What if the physical platform only has 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 ?

8

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

Second input: a (directed) Coupling Map

PHYSICAL PLATFORMS

9

Rigetti Aspen-3, 80 qubits (source: aws.amazon.com)

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

DEPENDENCY GRAPH (DAG)

For layout mapping, we can focus on the CNOT gates and ignore all unary gates

q0

q1

q2

q3 g4

g5

g7

g6

g8 g9

g10

g11

g12

g13

10

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

 Result: a new quantum circuit, observing “neighbours”, inserting minimal #SWAP gates

Apparently, the optimal solution for this example uses only 1 SWAP

Note: after the swap, the “logical qubits” are on different “physical qubits”

(indicated by the “measurements”)

Complicated factor: in general, one may need extra “ancillary” qubits! (q4)

ADDER – ON 5-QUBIT PLATFORM

11

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

MORE CHALLENGING – RESTRICT PLATFORM

q0 q1 q2 q3

Optimal number of swaps: 5

12

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

NEED FOR ANCILLARY QUBITS

q0 q1 q2 q3

Without using ancillary bits (4 swaps) With using ancillary bits (2 swaps)

q4

13

Cyclic coupling graph

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LESSONS INSPIRED BY CONCURRENCY

The notion of equivalence determines “optimality”

Should we preserve

 the same list of gates?

 only “local” dependency DAG? (POR)

 “layers” in a topological sorting? (parallelism)

Can we take advantage of “semantic” equalities?

Where is the limit? Complete re-synthesis?

Adder example

On cycle-platform With ancillary 2 swaps

Without ancillary 4 swaps

On star-platform Total topological order 8 swaps

Partial order preserved 6 swaps

[Itoko et al., in: Integration, 2020]

14

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLAN

1. Motivating example: Quantum Circuit Layout Synthesis

2. Classical Planning / Bounded Model Checking (SAT)

3. Concise Encoding of Planning in QBF

 Path Compression

 Lifted Planning (almost first-order)

4. Concise Encoding of 2-player board games in QBF

 Tic-tac-toe, Hex, Breakthrough, Domineering

5. Validation of encodings with QBF certificates

15

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

CLASSICAL PLANNING (PDDL)

 Domain description:

 States:

 Described by predicates

 Can be tested and updated

 Actions: (parametric)

 Described by pre-conditions and effects

 Both are conjunctions of predicates

 Problem instance:

 Concrete objects

 Initial state, Goal state(s)

16

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LAYOUT SYNTHESIS PLANNING
(OUTSTANDING DOMAIN SUBMISSION AWARD IPC-2023)

(define (domain quantum)

(:types

 gate - object ; binary or input gate

 pbit - object ; physical qubit

 lbit - gate ; logical qubit

)
 (:predicates
 (mapped ?l - lbit ?p - pbit) ; l is mapped on p

 (used ?p - pbit) ; p is in use

 (done ?g - gate) ; gate g is done

 (neighbour ?p1 ?p2 - pbit) ; static connections

 (cnot ?l1 ?l2 - lbit ?g0 ?g1 ?g2 - gate) ; gate dependencies

) …)

17

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LAYOUT SYNTHESIS: PROBLEM FILE
 (define (problem adder) (:domain quantum)

 (:objects
 l0 l1 l2 l3 - lbit

 p0 p1 p2 p3 p4 - pbit

 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 - gate

)
 (:init ; static predicates: platform & circuit

 (neighbour p0 p1) (neighbour p1 p0) (neighbour p3 p4) ...

 (cnot l2 l3 g4 l2 l3) (cnot l0 l1 g5 l0 l1) (cnot l1 l2 g7 g5 g6) ...

)
 (:goal
 (and (done g13))

))

q0

q1

q2

q3
g4

g5

g7

g6

18

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

ACTIONS: MAP INITIAL + SWAP
(:action map_init

:parameters

(?l1 - lbit ?p1 - pbit)

:precondition (and

(not (used ?p1))

(not (done ?l1))

)

:effect (and

(mapped ?l1 ?p1)

(used ?p1)

(done ?l1)

)

)

(:action swap

:parameters

(?l1 ?l2 - lbit ?p1 ?p2 - pbit)

:precondition (and

(neighbour ?p1 ?p2)

(mapped ?l1 ?p1)

(mapped ?l2 ?p2)

)

:effect (and

(not (mapped ?l1 ?p1))

(not (mapped ?l2 ?p2))

(mapped ?l1 ?p2)

(mapped ?l2 ?p1)

)

)

19

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

ACTIONS: APPLY A CNOT GATE
(:action apply_cnot

:parameters

(?l1 ?l2 - lbit ?p1 ?p2 - pbit ?g0 ?g1 ?g2 - gate)

:precondition (and

(cnot ?l1 ?l2 ?g0 ?g1 ?g2)

(neighbour ?p1 ?p2)

(mapped ?l1 ?p1) (mapped ?l2 ?p2)

(done ?g1) (done ?g2) (not (done ?g0))

)

:effect (and

(done ?g0)

)

)

20

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

COMPLETENESS: USE ANCILLARY QUBIT

(:action use_ancillary

:parameters

(?l1 - lbit ?p1 ?p2 - pbit)

:precondition (and

(neighbour ?p1 ?p2)

(mapped ?l1 ?p1)

(not (used ?p2))

)

:effect (and

(not (mapped ?l1 ?p1)) (not (used ?p1))

(mapped ?l1 ?p2) (used ?p2)

))

we also need the symmetric one with (neighbor ?p2 ?p1)

21

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

EFFICIENCY: COMBINE INIT_MAP IN CNOT
(:action apply_cnot_input_input

:parameters (?l1 ?l2 - lbit ?p1 ?p2 - pbit ?g0 - gate)

:precondition (and

(cnot ?l1 ?l2 ?g0 ?l1 ?l2)

(neighbour ?p1 ?p2)

(not (used ?p1)) (not (used ?p2))

(not (done ?g0)) (not (done ?l1)) (not (done ?l2))

)

:effect (and

(done ?g0) (done ?l1) (done ?l2)

(mapped ?l1 ?p1) (used ?p1)

(mapped ?l2 ?p2) (used ?p2)

))

we also need two variants with one input and one gate

22

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

EFFICIENCY 2: GROUNDING ALL GATES

(:action apply_cnot_g7 ; g7 depends on CNOT gates g5, g6

:parameters (?p1 ?p2 - pbit)

:precondition (and

(neighbor ?p1 ?p2)

(mapped l1 ?p1) (mapped l2 ?p2)

(done g5) (done g6) (not (done g7)))

:effect (and (done g7)))

(:action apply_cnot_g4 ; g4 depends on input gates l2, l3

:parameters?p1 ?p2 - pbit)

:precondition (and (neighbor ?p1 ?p2)

(not (used ?p1)) (not (used ?p2)) (not (done g4)))

:effect (and (done g4)

(mapped l2 ?p1) (used ?p1)

(mapped l3 ?p2) (used ?p2)))
23

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

IMPLEMENTATION: Q-SYNTH

 Our tool Q-SYNTH

Implemented in Python:

• Input: quantum circuit + coupling graph Output: PDDL planning instance

• Uses QISKIT for I/O and computing the dependency graph

 We need a “planning tool”, running in “optimal mode”

 take winners from IPC – international planning competitions

 Madagascar – SAT based (similar to BMC)

 Fast Downward Soup

 Shortest Plan quantum circuit: re-insert the unary gates

24

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

SABRE (QISKIT): Tackling the qubit mapping problem for NISQ-era quantum devices
G. Li, Y. Ding, and Y. Xie (ASPLOS 2019)

 Heuristic, fast, but not-optimal

QMAP: Mapping Quantum Circuits to IBM QX Architectures
Robert Wille, Lukas Burgholzer and Alwin Zulehner (DAC-2019)

 Used SAT + SMT technology

 Considers all permutations of qubits

OLSQ: Optimal Layout Synthesis for Quantum Computing,
Bochen Tan and Jason Cong (ICCAP 2020)

 Also SAT + SMT, exponentially less variables, avoids permutations

COMPARING TO RELATED WORK

25

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

SMALL PLATFORM – 5 QUBITS (TIME IN SEC)

 Note: all tools work, Q-synth is fast and always optimal

 G-bj: Global Encoding (lifted, separate init)

 L-* : Local Encoding (grounded, integrated init)

 SABRE is non-optimal (by design)

 QMAP is non-optimal in a few cases (total order)

 OLSQ might also be non-optimal (fixed horizon)

26

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LARGER PLATFORM – 14 QUBITS (3HR TIMEOUT, 48 GB MEM)

 SABRE is non-optimal: can use 13 Swaps instead of 10 = 9 extra CNOT gates (!)

 Q-SYNTH is the only exact tool that scales: 9 logical qubits on 14 physical qubits
 The planner backends are somewhat complementary

 Planning without using ancillary bits is considerably easier

27

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

CONCLUSION, PERSPECTIVES
 Classical Planning for optimal layout synthesis gives superior results

 Classical Planning could also make use of heuristic planners (suboptimal plans)

Even better encodings are possible, to limit the search space

 The sub-architecture technique from QMAP can also be applied in Q-SYNTH

 Parallel plans, exploit symmetries, relaxed dependencies

 Current/Future work: Direct SAT encoding, …
 Future work: Other costs (swap depth, noise reduction, …)
 Future work: Quantum Circuit Optimization seems a much harder problem

28

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLAN

1. Motivating example: Quantum Circuit Layout Synthesis

2. Classical Planning / Bounded Model Checking (SAT)

3. Concise Encoding of Planning in QBF

 Path Compression

 Lifted Planning (almost first-order)

4. Concise Encoding of 2-player board games in QBF

 Tic-tac-toe, Hex, Breakthrough, Domineering

5. Validation of encodings with QBF certificates

29

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLANNING: BOUNDED MODEL CHECKING

 Domain description:

 States (S): Described by predicates

 Actions (A): Described by pre-conditions and effects

 Problem instance:

 Concrete objects

 Initial state (I), Goal state (G)

Bounded Model Checking / Planning as Satisfiability [Kautz, Selman 1992]

 State variables 𝑆 per time step

 Transition relation 𝐴 captures actions

 Reduce to SAT solver (plan of 2 actions)

∃𝑆 , 𝑆 , 𝑆 ∶ 𝐼 𝑆 ∧ 𝐴 𝑆 , 𝑆 ∧ 𝐴 𝑆 , 𝑆 ∧ 𝐺 𝑆

30

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LIMITATION OF BMC WITH SAT IN PLANNING

 The encoding may become very large:

 The transition relation can become quite large

 Grounding: Instantiate actions for all object combinations

𝒂𝒑𝒑𝒍𝒚_𝒄𝒏𝒐𝒕 𝒍𝟏, 𝒍𝟐,𝒑𝟏,𝒑𝟐,𝒈𝟏,𝒈𝟐,𝒈𝟑

 Copying: The transition relation is copied for each step

 Existing solution (in planning and bounded model checking):

 “Iterative squaring”, also known as “path compression”

 Encode in QBF: only one copy of transition relation 𝐴

31

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

QBF AND CONCISE ENCODING

 QBF extends Propositional Logic with quantifiers over propositions

 Only one of the following formulas is true:

1. ∀𝑥 ∃𝑦 ∶ 𝑥 ∧ 𝑦
2. ∃𝑦 ∀𝑥 ∶ 𝑥 ∧ 𝑦
3. ∀𝑥 ∃𝑦 ∶ 𝑥 ↔ 𝑦
4. ∃𝑦 ∀𝑥 ∶ 𝑥 ↔ 𝑦

 Let 𝜙 be a very large formula: how can we encode 𝜙 𝐴 ∧ 𝜙 𝐵 concisely?

∀𝑥 ∶ 𝑥 𝐴 ∨ 𝑥 𝐵 → 𝜙 𝑥
 Here we use only one copy of 𝜙

32

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

QBF SOLVERS

 SAT is a special case of QBF – only ∃-quantifiers – NP-hard

 In general, solving QBF is PSPACE-complete

 The quantifier alternation depth is a crucial factor for complexity

 Practical QBF solvers exist, there is also a yearly QBF-EVAL competition

(we contributed our planning and game encodings to QBF-EVAL)

 Example QBF solvers:

 CAQE [Rabe, Tentrup]

 DepQBF [Lonsing, Biere]

 …

We proposed a translator from PDDL to QBF (ICAPS 2022)

33

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLAN

1. Motivating example: Quantum Circuit Layout Synthesis

2. Classical Planning / Bounded Model Checking (SAT)

3. Concise Encoding of Planning in QBF

 Path Compression

 Lifted Planning (almost first-order)

4. Concise Encoding of 2-player board games in QBF

 Tic-tac-toe, Hex, Breakthrough, Domineering

5. Validation of encodings with QBF certificates

34

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

FLAT AND COMPACT TREE ENCODING

 Flat Encoding

 Only one copy of transition relation

 log 𝑘 2 quantifier alternations

[Rintanen, 2003]
[Dershowitz etal, 2005]
[Jussila, Biere, 2007]

 Compact Tree Encoding

 Log copies of transition relation

 log 𝑘 1 quantifier alternations

[Cashmore et al, 2012]

𝑦

𝑦 𝑦

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆

35

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLAN

1. Motivating example: Quantum Circuit Layout Synthesis

2. Classical Planning / Bounded Model Checking (SAT)

3. Concise Encoding of Planning in QBF

 Path Compression

 Lifted Planning (almost first-order)

4. Concise Encoding of 2-player board games in QBF

 Tic-tac-toe, Hex, Breakthrough, Domineering

5. Validation of encodings with QBF certificates

36

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LIFTED CLASSICAL PLANNING AS QBF (1)
 Irfansha Shaik and Jaco van de Pol, Classical planning as QBF without grounding.

In: ICAPS 2022 (International Conference on Automated Planning and Scheduling)

 Grounding: Instantiate actions for all object combinations

apply_cnot(l1, l2, p1, p2, g1, g2, g3)

𝟒 𝟒 𝟓 𝟓 𝟏𝟎 𝟏𝟎 𝟏𝟎 𝟒𝟎𝟎,𝟎𝟎𝟎 potential instances!

 Main motivating example: Organic Synthesis (MIT exams organic chemistry)
[Masoumi et al, 2015], outstanding domain submission award IPC-2018

 Note: in this case, the direct SAT encoding cannot even be generated!

37

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

 We use Universal Quantifiers to enumerate all object combinations symbolically

 Result: QBF encoding remains small, even for organic synthesis

 QBF solver CAQE can handle this encoding reasonably well

 Beats SAT-based planning by a large margin (Madagascar)

 Competitive with the winning planning tools from IPC 2018 (FDSS, PowerLifted)

 We are only competitive if “grounding” is the bottleneck

LIFTED CLASSICAL PLANNING AS QBF (2)

…. There exist Actions and Parameters

…. Such that for all object combinations

…. There exists a plan of k steps

38

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLAN

1. Motivating example: Quantum Circuit Layout Synthesis

2. Classical Planning / Bounded Model Checking (SAT)

3. Concise Encoding of Planning in QBF

 Path Compression

 Lifted Planning (almost first-order)

4. Concise Encoding of 2-player board games in QBF

 Tic-tac-toe, Hex, Breakthrough, Domineering

5. Validation of encodings with QBF certificates

39

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

ENCODING 2-PLAYER GAMES IN QBF

 We used QBF to encode planning problems

 QBF allows arbitrary quantifier alternation

 Then why not encode 2-player games?

 Player 1 can win the game in 3 moves:

 ∃𝒎𝟏∀𝒎𝟐∃𝒎𝟑∀𝒎𝟒∃𝒎𝟓 ∶ ∃𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 :
 𝑠𝑡𝑎𝑟𝑡 𝑆 ∧ 𝑀𝑜𝑣𝑒 𝑆 ,𝑚 , 𝑆 ∧ ⋯∧𝑀𝑜𝑣𝑒 𝑆 ,𝑚 , 𝑆 ∧𝑊𝑜𝑛 S

 Needed:

 Domain-specific language to specify grid-based board games: BDDL

 Concise encoding from BDDL into QBF “there exists a winning strategy in 𝑑 moves”

40

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

BDDL – BOARD-GAME DESCRIPTION

 Irfansha Shaik, Jaco van de Pol, Concise QBF Encodings for Games on a Grid.
In: arXiv :2303.16949, 2023

Domain-specific modeling language for Grid-based Board Games

 Assume an 𝑚 𝑛 board of positions, and 2 players (Black, White)

 Describe Black and White moves for symbolic position 𝑥, 𝑦
 Can refer to neighbours, like “open 𝑥, 𝑦 1 ” or “white 𝑥 2,𝑦 1 ”

 Implicitly observe the board boundaries

 Describe Black and White winning conditions

 Patterns starting at symbolic position 𝑥, 𝑦
 Example: black 𝑥, 𝑦 , black 𝑥, 𝑦 1 , black 𝑥, 𝑦 2

41

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLAN

1. Motivating example: Quantum Circuit Layout Synthesis

2. Classical Planning / Bounded Model Checking (SAT)

3. Concise Encoding of Planning in QBF

 Path Compression

 Lifted Planning (almost first-order)

4. Concise Encoding of 2-player board games in QBF

 Tic-tac-toe, Connect4, Breakthrough, Domineering, Hex

5. Validation of encodings with QBF certificates

42

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

TIC-TAC-TOE (POSITIONAL GAME)

 #blackactions
 :action occupy
 :parameters (?x,?y)
 :precondition (open(?x,?y))
 :effect (black(?x,?y))

 #whiteactions
 :action occupy
 :parameters (?x,?y)
 :precondition (open(?x,?y))
 :effect (white(?x,?y))

43

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

GENERALIZED TTT (POSITIONAL GAME)

 #blackgoals % Elly

 (black(?x,?y) black(?x,?y+1)
 black(?x+1,?y) black(?x+2,?y))

 (black(?x,?y) black(?x,?y+1)
 black(?x+1,?y) black(?x+1,?y))

 ...

 #whitegoals % Knobby

 (white(?x,?y) white(?x,?y+1)
 white(?x-1,?y) white(?x+1,?y)

 ... [Diptamara etal, QBF @ SAT 2016]

𝑥,𝑦
44

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

CONNECT4 (NON-POSITIONAL GAME)

 Move on 𝑥, 𝑦 depends on other positions

 #blackactions
 :action occupy_on_top
 :parameters (?x,?y)
 :precondition
 (open(?x,?y) (not(open(?x,?y-1)))

 :effect (black(?x,?y))

 :action occupy_on_bottom
 :parameters (?x,?y)
 :precondition (open(?x, ymin))
 :effect (black(?x, ymin))

45

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

BREAK-THROUGH (CAN TAKE PIECES)

 “Chess with pawns”

[Stephenson et al., preprint

 #whiteactions
 :action take_right
 :parameters (?x,?y)
 :precondition
 (white(?x,?y) black(?x+1,?y+1))

 :effect
 (open(?x,?y) white(?x+1,?y+1))

 #whitegoals
 (white(?x, ymax))

46

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

DOMINEERING (MULTIPLE POSITIONS)

[J. Davies et al., Institute of Mathematics]

 #blackactions
 :action domino-horizontal
 :parameters (?x,?y)
 :precondition (open(?x,?y) open(?x+1,?y))
 :effect (black(?x,?y) black(?x+1,?y)

 #blackgoals
 False

 The first player that has no move loses the game

47

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

LIFTED QBF TRANSLATION: WIN IN STEPS
 We use quantifier alternations to

alternate between moves of the players.

 We encode positions using bitvectors.
We introduce “Boolean circuitry” to
handle “? 𝑥 𝑐” and “𝑦 ? 𝑦 𝑦 ”

 We use “game-stop” variables to check
(non)-winning of intermediate positions

 We use bitvectors for Black Winning and
White Non-Winning conditions

 We use symbolic position variables to
check for all positions symbolically

 We check that the resulting play is a
valid winning play, for pos 𝑆 , 𝑆

linear in input size of game and 𝑑,
𝑑 3 quantifier alternations

48

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

HEX (PIET HEIN)

 Irfansha Shaik, V. Mayer-Eichberger, J vd Pol, A. Saffidine,

 Implicit State and Goals in QBF Encodings for Positional Games.
In: arXiv 2301.07345, 2023

Hex: Back to positional games

 But exponentially many winning patterns.

 Solution:

 Lifted encoding of winning path, using 𝑁 𝑥, 𝑦 -relation

 Several encodings: (non)-lifted, (non)-CNF, …

Results:

 Can solve Hein’s puzzles on small boards with QBF-solver

 Can encode and solve human-played end-games on large boards

49

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

PLAN

1. Motivating example: Quantum Circuit Layout Synthesis

2. Classical Planning / Bounded Model Checking (SAT)

3. Concise Encoding of Planning in QBF

 Path Compression

 Lifted Planning (almost first-order)

4. Concise Encoding of 2-player board games in QBF

 Tic-tac-toe, Connect4, Breakthrough, Domineering, Hex

5. Validation of encodings with QBF certificates

50

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

VALIDATION OF ENCODINGS IN QBF

 Irfansha Shaik, Maximilian Heisinger, Martina Seidl, and Jaco van de Pol,

 Validation of QBF Encodings with Winning Strategies. In: SAT 2023

 Encoding in QBF is difficult: low-level, error-prone, resulting strategy is hard to test

 Can we use certificates, which are already produced by QBF solvers?

 Validation of QBF solvers

 Validation of QBF encoding

Ideas:

 Can use the certificate to extract winning strategy interactive play

 Also: basis for automatic testing of invariants, equivalences, etc.

Scalability:

 Full certificate: checking is efficient, but certificates are enormous

 Only witness of first layer: certificates are small, but need many QBF queries

 Partial certificates: certificates are reasonable, checking is efficient

51

JACO VAN DE POL

20 MARCH 2023 PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

CONCLUSION

 We can solve interesting problems as classical planning problems

 Optimal Quantum Layout Synthesis

 Organic Synthesis

 QBF and QBF solvers can be used, based on concise encodings

 Path compression

 Lifted encodings

 The QBF encoding can be extended to 2-player games

 Board games, symbolic positions

 Hex, symbolic winning conditions

 Validation of encodings

 Winning strategies can be validated, based on QBF certificates

 Interactive play, invariant testing, equivalence testing

52

AARHUS
UNIVERSITY

