DIAMONDS

Advisory Committee – 25 February 2025

Research funded by

DIAMONDS

Dynamic Integrated Assessment Methods for Sustainable Development of the Subsurface

Welcome

Advisory Committee

Agenda

- **08h30-09h00** Arrival at Tabloo, Gravenstraat 3, 2480 Dessel (www.tabloo.com)
- 09h00-10h45 Presentations DIAMONDS
- 10h45-11h00 Break
- 11h00-12h00 Presentations DIAMONDS
- 12h00-13h00 Lunch @Bistroo
- 13h15-16h00 Guided tour @Tabloo
- 16h00 End of the visit

Agenda

09.00: Welcome

09.10: WP1 PC&I

09.20: WP2/3 Sustainable production, with and without interference

10.15: WP4 Social impact assessment

10.45: Break

11.00: WP5a Economic impact assessment

11.30: WP5b Environmental impact assessment

DIAMONDS

Subsurface development scenarios

Groundwater vs. Aquifer Thermal Energy Storage (ATES)

Gas storage vs. Deep Geothermal Energy

Deep Geothermal Energy with multiple doublet systems

Integrative sustainability framework

DIAMONDS

WP1. Integrative sustainability framework

Aim

- 1. Define the principles that represent the value pluralism, which serve as a basic outline for the other projects.
- 2. Combine the knowledge gathered by the other WPs and stakeholders to formulate a Principles, Criteria & Indicator (PC&I) framework.

Principles, Criteria & Indicators framework

A hierarchical framework to assess the sustainability of certain economic activities consisting of three hierarchical levels. Here within the context of ecological economics, meaning that all economic activities have to take place within the ecological and social boundaries (sustainable scale).

Determine the principles at hand in the subsurface

Determine representative sustainable development scenarios (SDS)

Formulate criteria starting from the SDS activities individually

Include possible impact of interference between the activities

Formulate indicators for each criterion and activity

Validate the PC&I framework

Determine the principles at hand in the subsurface

Determine representative subsurface development scenarios (SDS)

Formulate criteria starting from the SDS activities individually

Include possible impact of interference between the activities

Formulate indicators for each criterion and activity

Validate the PC&I framework

Schematical representation

Principle: Universal value that determines sustainability

Criterion: Measurable condition for the level of applicability of the principle; qualitative or quantitative

Indicator: Observable expression that describes the characteristics of the real situation using one or more variables to compare to a reference value/benchmark; qualitative or quantitative

Principles

Determined based on a literature review, a tworound Delphi survey of national and international experts and a workshop with Flemish stakeholders - Government

assignment (VPO)

P1 - Principle of conserving resources and assimilative capacity

P2 – Principle of efficient allocation

P3 – Principle of fair (or just) distribution

P4 – Principle of transparency

P5 – Principle of inclusive governance

P6 – Principle of responsible risk management

Subsurface development scenarios

Groundwater vs Aquifer Thermal Energy Storage (ATES)

Gas storage vs Deep Geothermal Energy

Deep Geothermal Energy with multiple doublet systems

Example:

Principle 1 – Conserving resources and assimilative capacity Step a - Preservation of resources

Criterion 1.1 - Extractive activity: existing resource stocks are conserved implying that extraction does not exceed natural regeneration, within a human scale

Indicator 1.1.1 – Steady-state extraction rate

Example:

Principle 1 – Conserving resources and assimilative capacity Step a - Preservation of resources

Criterion 1.2 - Additive activity: after ending the activity the subsurface will return to its initial state

Indicator 1.2.1 – Degree of expected return to initial state

Questions?

WP 2 & 3

Sustainable production, with and without interference Shallow subsurface

DIAMONDS

WP2. Sustainable production, no interference&WP3. Sustainable production, with interference effects

Competing shallow subsurface activities

Understand the interactions between groundwater extraction and shallow geothermal energy storage

What temperature changes are acceptable in terms of advection distance?

What thermal recovery is considered sustainable?

Tasks

Develop **flexible modelling framework** to study the interaction.

Examine aquifer parameters on the interaction.

Examine design parameters on the interaction.

Model multiple ATES under both balanced/unbalanced conditions.

ATES – Aquifer Thermal Energy Storage

- Store thermal energy in an aquifer
- Heat/cool large buildings
 in winter/summer
- May affect temperature in groundwater extraction

A case

- Based on Grobbendonk extraction zone

(22 000 m³/day from a sandy aquifer) and 2 500 m³/day ATES extraction/injection.

- We use Modflow 6 and MT3D to simulate groundwater flow and heat transport.

Extreme case: 24h advection distance (120 m separation)

Temperatures in each well

For this example, with realistic aquifer parameters, but extreme design parameters (120 m/24h separation), we find a limited effect of the temperatures in the extraction well.

What about the thermal recovery efficiency?

Preliminary conclusions

- Presumed interactions are confirmed.
- Temperature changes in extraction zone are small.
- Use ATES within groundwater protection zones?

Sustainable production, with and without interference Deep subsurface

DIAMONDS

WP2. Sustainable production, no interference&WP3. Sustainable production, with interference effects

High-performance, physics-based modelling framework

Long and very long-term behavior (decades to centuries), with small scale dynamics (yearly to seasonal)

Support the technical aspect of TEA with efficient models

Tasks

Develop **flexible modelling framework** to study the interaction.

Influence area and sustainability: P,T and concept of sustainability

Planning and placement of wells: efficiency and sustainability

Model multiple geothermal setups to access interference

- Part 1: Influence Area and Sustainability
- Say we use a geothermal doublet for 20-50 years
- What happens afterwards?
 - How long does the subsurface stay cold?
- We know that the production well recovers quickly
- But what about the injector?

- We simulated running doublets for 40 years
- Then we stopped "production" but let the physical simulation continue
- We measured the average temperature in
 - The TAA (using its extent after production stop)
 - The license area

Chen et al. Geoenergy science and engineering, 2025

- We defined "recharged" when the average T was back to 2K of its original temperature
- That takes really long

• Next

- More definitions of recharge
 - By Temperature recharge
 - By Energy recharge
 - By cold plume shrinkage
- Measuring \rightarrow predicting
- to make large-scale models manageable

• Part 2: Analytical doublet model for Techno-economic Assessment

WP 2/3 - Deep Geothermal

- Main goal: production temperature over time
 - Helps us predict lifetime and produced power

WP 2/3 - Deep Geothermal

- We can predict time of thermal breakthrough
- We're working on T(t) after that

Wallmeier et al. Stanford Geothermal Workshop, 2025

WP 2/3 - Deep Geothermal

- Lifetime prediction mostly works
 - RMSE ca. 3 years, bigger for "far future" beyond 40 years
 - But we still have ideas to make it

Social impact assessment

DIAMONDS

WP4. Social impact assessment

Determine social indicators and impacts that influence the just use of subsurface resources

Consider a variety of justice dimensions that must be considered for the cases in the Campine Basin

Tasks

Determine if subsurface resources might be perceived as **public / common goods** & which **dimensions of justice** are seen as relevant for the development of these (currently researching)

Make an engagement plan that leads to a just involvement of relevant groups (year 2)

Determine potential **social impacts** of subsurface activities & how these (+ economic & environmental) impacts can be **distributed in a just way** (year 3)

Study the **social carrying capacity** for subsurface activities and how indicators like trust, (difference of) values, and recognition influence this capacity (year 4)

Research part 1

Study subsurface resources as **commons** (public/common goods) + establish **environmental justice** as a suitable guiding concept to develop these commons

- Methodology
 - Literature
 - 4 stakeholder workshops
- Status
 - Analysis \rightarrow prelimenary results

The commons in the Campine area

- The Campine area had commons for many centuries
 - Inclusive communal practices
- Forced by law to privatise and exploit in the 18th century
 → resisted for another century

"The objective of maintaining an equilibrium and peaceful coexistence between the different interest communities, each acquiring sufficient benefits from the commons, was more important than pursuing the most commercial strategy." (De Keyzer, 2013)

Prelimenary results – commons

Commons		Excludability
Subsurface resources belong to:	the community	Financial barriers
	'nature' or 'the earth', especially deeper resources	Infrastructural bariers
	the government ('the state')	Knowledge bariers Some subsurface resources should be inaccessible for general public Inaccessibility can be overcome by acting collectively
	everybody ('the nation')	
	nobody	
	the owner of the above-surface area	Rivalry
Subsurface resources are global commons		When there is a rivalry or conflict between different subsurface activities, societal benefit is important to consider
More shallow resources belong to the ground-owner and deeper resources belong to the state		· · · · ·
Common management can lead to more social cohesion than exploitation by external company		

Prelimenary results – justice

Justice	
Distributional justice	Energy resources <-> waste disposal resources Costs + benefits for some <-> costs for some + benefits for all
	If benefits are for everyone, then everyone should also bear the costs together
	Participation
	Importance of societal carrying capacity
Procedural justice	Consultation council for every type of activity (with citizens)
	Low-threshold societal debate
	Veto-power for local communities
Recognition justice	' <mark>Brussels' versus local communities</mark> -> lack of recognition of local context, opinions, ?
Ecological justice / distributional justice for nature	Fair distribution of costs (waste) between humans & nature ? "rights of mother earth"
Intergenerational justice	
'Deep time' justice	
Global justice	
Possible conflict between more local governance (more procedural justice) and higher-level governance (more distributional justice)	

Prelimenary results – values / interests

Values		
Public health	Security / stability	
Safety	Scientific basis	
Fairness	Societal benefit / utility	
Recovery (in context of groundwater)	Transparancy	
Sustainability	Acceptance from local community	
Good documentation for next generations	Caution (under uncertainty)	
Accountability (for project developers)	Social cohesion	
BATNEEC (Best Available Technology Not Entailing Excessive Costs)	Participation	
Economic viability	Efficiency	
Economical use of resource	Resource conservation	
Biodiversity	Environmental protection	

Prelimenary results – decision-making

Decision-making right	Fair management
Government	Multi-level governance (subsurface resources don't stop at borders)
Universities	Specific licensing systems for the subsurface
(Independent) government organisation	Specific policy for subsurface management
Community	Infrastructure owned by the government
Not politicians	Federal management
Experts / technici	Company to access and divide resource (so everyone has access) <-> Independent organisation to access and divide resource

WP 5a

Economic impact assessment

DIAMONDS

WP5a. Economic impact assessment

Dr. Hanne Lamberts-Van Assche Prof. Dr. Tine Compernolle

University of Antwerp Faculty of Business and Economics

Evaluate the economic impacts of the various subsurface development scenarios

Consider various sources of uncertainty and flexibility options

Include strategic interactions between different actors in the subsurface

Tasks

Preparation of a geo-technical backbone & market analysis (year 1)

Perform an economic evaluation of the subsurface development scenarios (year 1)

Develop **Real Options Games** to include strategic interactions between multiple actors (year 3)

Integrate economic evaluation with the environmental impact assessment (WP5b) (year 4)

Disclaimer

- No results (yet)...
- ... but insights in the methods that will be applied in WP5a
- ... and the type of info we may need

Subsurface activities

From Techno-Economic Assessment...

- The economic feasibility of one subsurface activity can be evaluated with a Techno-Economic Assessment (TEA)
- Calculate the Net Present Value (NPV) of an investment in a subsurface activity, at a particular location, given certain values for the electricity price/ temperature/permeability/...

From Techno-Economic Assessment...

⇒What is it worth today to invest in ATES/DGE/groundwater/...?

From Techno-Economic Assessment...

- With a TEA of 1 subsurface activity, we ignore...
 - Uncertainties in parameters
 - Flexibility in the decision-making
 - Interferences between activities
 - Strategic interactions between subsurface actors

... to Real Options Analysis...

- The optimal investment decision of one subsurface activity can be evaluated with a Real Options Analysis (ROA)
- Find the **optimal timing to invest** in one subsurface activity, considering multiple uncertainties and the flexibility to delay decisions

... to Real Options Analysis...

⇒What is the optimal timing to develop location X for ATES/DGE/groundwater/...?

... to Real Options Analysis...

- With a ROA of 1 subsurface activity, we ignore...
 - Uncertainties in parameters
 - Flexibility in the decision-making
 - Interferences between activities
 - Strategic interactions between subsurface actors

... to Real Options Games

- The optimal investment decisions for multiple subsurface activities can be evaluated with a Real Options Game (ROG)
- Evaluate how the optimal timing to invest in subsurface activities is affected by the possible interferences & interactions

Real Options Game – ATES & Groundwater

- Player 1:
 groundwater company
 - Public actor!
- Uncertainties:
 - Groundwater level
 - Electricity price

• Effect on ATES?

• ATES not allowed within protection zones

- Player 2: ATES
 developer
 - Private actor!
- Uncertainties:
 - Hydraulic conductivity
 - Heating price
- Effect on groundwater?
 - Temperature difference compared to natural groundwater
 - Protection zones of water extraction

Real Options Games

Groundwater vs. Aquifer Thermal Energy Storage (ATES)

Gas storage vs. Deep Geothermal Energy

Deep Geothermal Energy with multiple doublet systems

Future steps

Economic evaluation for ATES & groundwater (individually)

Identifying uncertainties for ATES & groundwater (individually)

Real Options Analysis for ATES & groundwater (individually)

Identifying possible interactions for ATES – groundwater

Develop Real Options Game for ATES – groundwater

Develop Real Options Analysis for DGE

The multi-actor challenge

- We value your feedback!
- If you want to have more insights in the method...
- If you want to give input on possible uncertainties, interactions or interferences,...
- If you want to share data...
- Contact us!

hanne.lamberts-vanassche@uantwerpen.be tine.compernolle@uantwerpen.be

Questions?

Environmental impact assessment

DIAMONDS

WP5b. Environmental impact assessment

Evaluate environmental impact of subsurface activities

Describe the subsurface system qualitatively and quantitatively

Enrich system with agents that use bounded rationality

Tasks

Finish causal loop diagram

Develop a **minimal system dynamic model** and gather data to quantify this system

Expand system dynamic model progressively towards the causal loop diagram

Enrich system dynamic model with methods from **behavioural economics (ABM)**

Calculate environmental impacts using prospective LCA on scenario outcomes

WP5b – CLD Paper – Stakeholers

• Currently all but one stakeholder role has been fulfilled!

Stakeholder roles	Representation	Case 1	Case 2
Bearer	3	3	3
Researcher	3	2	2
Policy designer	3	1	2
Policy maker	1	1	1
Permit advisor	2	1	1
Permit evaluator	1	1	1
Permit licenser	1	1	1
Developer	4	3	1
User	2	2	0

WP5b – CLD Paper – Detail

- Causal loop diagram of Case 1(v16) has 103 variables
 - High level of **complexity**
 - Difficult to interpret
 - Need to categorize the CLD
 - Need to simplify the CLD

WP5b – CLD Paper – Categorization

Thematic categorization	Model-systemic categorization
Governance	Exogenous, stable, constant
Social	Exogenous, stable, parameter
Economic	Exogenous, dynamic
Environmental	Output
Geotechnical	Endogenous, bridging
	Endogenous, fundamental

WP5b – CLD Paper – Simplification

WP5b – CLD Paper – Simplification

103 Variables → 28 Variables

WP5b – CLD Paper – Analysis

- 1) Determine critical nodes
- Network Analysis
- 2) Discussion of topics
- Competition
- Social Acceptance
- Regulation
- Safety/risk
- Complementary activities/processes
- (Societal) Cost

3) Discuss critical loops

4) What unexpected parts are lacking?

WP5b – CLD Paper – Network Analysis

- Quantitative analysis of network
 - Degree Centrality
 - ➔ Most connections
 - Betweenness Centrality
 - → Element of shortest path between two variables
 - → Key bridges
 - Closeness Centrality
 - → Distance to other variables
 - Spread information to rest of network

WP5b – CLD Paper – Network Analysis

Variable	Degree	Betweenness	Closeness
Maximal ATES heat/cold production capacity	1	1	1
Market acceptance ATES	2	2	/
Groundwater extraction rate	3	5	/
GW Policy	4	4	/
Production costs GW	5	/	/
Groundwater Temperature Variability	/	/	2
Investment costs ATES	/	/	3
ATES interference	/	/	4
ATES Policy	/	/	5
Cap layer quality	/	3	/

WP5b – CLD Paper – Feedback on CLD

- CLD is almost finished.
- Current version (both the simplified and detailed one) will be sent to stakeholders for feedback
- FB is welcome!

WP5b – SD Paper – Start up

- Create Excel sheet which includes an overview of all relations present in the CLD
- Read literature/books on quantification of CLD
- Study code of other researchers who developed comparable models

→ Important for AC members: we will need data to develop and calibrate this model.

Questions?

Communication

Logo

Dynamic Integrated Assessment Methods

for Sustainable Development of the Subsurface

DIAMONDS @ LinkedIn

DIAMONDS | sustainable subsurface management

Dynamic Integrated Assessment Methods fOr the sustaiNable Development of the Subsurface Onderzoeksdiensten · 24 volgers · 11-50 medewerkers

Agenda

- 08h30-09h00 Arrival at Tabloo, Gravenstraat 3, 2480 Dessel (www.tabloo.com)
- 09h00-10h45 Presentations DIAMONDS
- 10h45-11h00 Break
- 11h00-12h00 Presentations DIAMONDS
- 12h00-13h00 Lunch @Bistroo
- 13h15-16h00 Guided tour @ Tabloo
- 16h00 End of the visit

