Advisory Committee – 26 February 2024

Welcome

Advisory Committee

Agenda

- 9.00: Site visit @ Fluxys gas storage
- **12.00**: Lunch
- **13.00**: Welcome & Introduction to DIAMONDS
- 13.30: Parallel sessions
 - 13.30: Parallel sessions round 1
 - 14.45: Coffee break
 - 15.00: Parallel sessions round 2
- 16.15: Wrap-up
- 16.30: Coffee to end the day

Introduction

The DIAMONDS project

Scientific part

Valorization part

Dynamic Integrated Assessment Methods fOr the sustaiNable Development of the Subsurface

The Campine basin

Project team

University of Antwerp Faculty of Business and Economics

Prof. Dr. Tine Compernolle

Prof. Dr. Anne Bergmans

Universiteit Antwerpen

Faculteit Toegepaste Ingenieurswetenschappen

Dr. Matti Buyle

Prof. Dr. Brent Bleys

Prof. Dr. Thomas Hermans

Civil Engineering and Geosciences

Prof. Dr. Alex Daniilidis

Prof. Dr. Phil Vardon

Dr. Kris Piessens and Dr. Kris Welkenhuysen

Dr. Hanne Lamberts-Van Assche

Alexander Van Overmeiren Alexandra Vancammeren

PhD researchers

Related ongoing research projects

UNIVERSITEIT

Luka Tas

Mujtaba Masroor

Uncertainty Quantification (ATES2.0). FWO PhD fellowship.

natural sciences be

Jose Rodriguez

Geological Economics FED-tWIN

Multidisciplinary Assessment of Subsurface Interactions: the fundamentals (MASSIF). FWO research project.

Improving Aquifer Thermal Energy Storage Systems Design through Advanced Hydrogeological

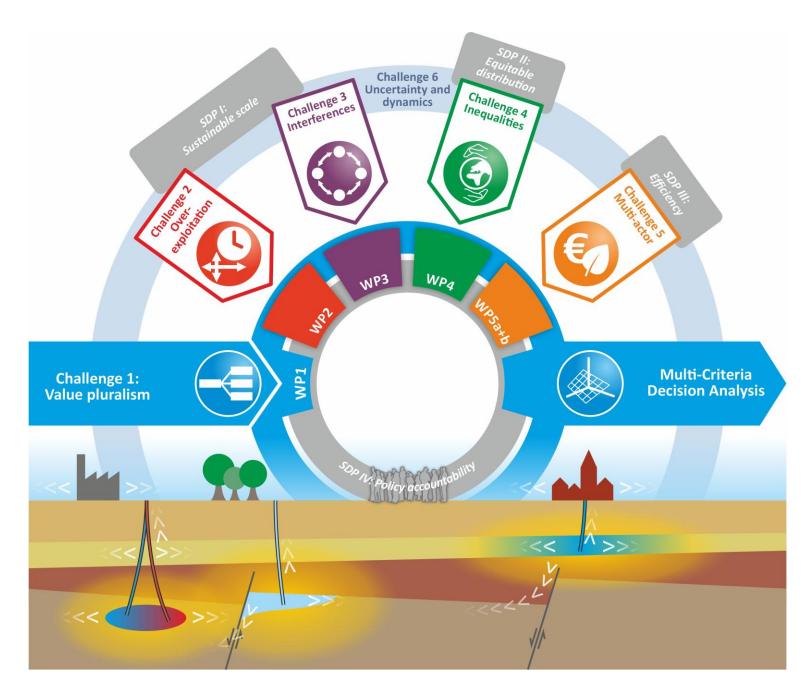
Sustainable management of geological resources. UAntwerp BOF

Adithya Eswaran

VPO government assignment

Maatschappelijke impact van het gebruik en beheer van de Vlaamse <u>diepe</u> ondergrond (Jan 2023 – Jun 2024)

- Doel van de opdracht: duurzaam beheer van de ondergrond?
 - Indicatoren en randvoorwaarden voor duurzame ontwikkeling van de ondergrond
 - Geologische mogelijkheden en impacts
 - Bovengrondse milieu-economische en sociale effecten
- 3rd Stakeholder workshop 26 March 2024
 - Stakeholder mapping
 - Internationaal beleid
 - Resultaten impactanalyse voor verschillende beleidsscenario's



Vlaanderen

Scientific part

- PC&I framework to evaluate the sustainability of subsurface use
- Long term (overexploitation?)
- Multifunctional use (interference?)
- Social impact (aspects of justice/inequalities?)
- Economic and environmental impacts (multi-actor?)
- Dynamics and uncertainties?
- Integration?

WP1: Integrative framework to assess the sustainability of subsurface developments *Back-end*

/P7: Research communication and dissemination

Linking to the objectives

O1: to understand what sustainable management of geological resources involves and how to measure it

O2: to develop flexible (hydro)geological models to determine hydrogeological threshold values for the identified sustainability indicators

O3: to determine the social impacts of subsurface utilization, considering tenets of environmental justice

O5: to determine the changes in environmental impact resulting from subsurface utilization, taking into account the time at which these impacts occur

O6: to integrate the calculated environmental and economic values together with hydrogeological values into a multi-dimensional decision support framework

O4: to detemine the economic impacts of subsurface utilization in time, taking into account different development options

Valorization part

DIAMONDS - Advisory Committee

DIAMONDS - Advisory Committee

- Utilization objectives
 - The creation of a shared vision on the sustainable development of the Campine Basin
 - To provide insights for public policy advisors to help them improve the regulatory framework to manage potential interference effects between subsurface activities within the Campine Basin for the long-term, treating all subsurface activities on an equal basis
 - To create a methodological decision support framework to help stakeholders understand how the use of the Campine Basin can be matched with above-ground sustainability objectives.

DIAMONDS - Advisory Committee

Utilization strategy

Year 1-2: creation of a general framework that synthesizes the indicators of sustainable subsurface development

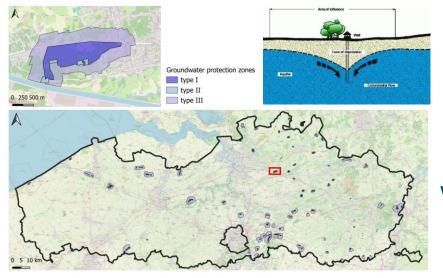
Year 2-3: model testing, applications in the practice field, and mutual learning Year 3-4: co-creation of knowledge transfer tools

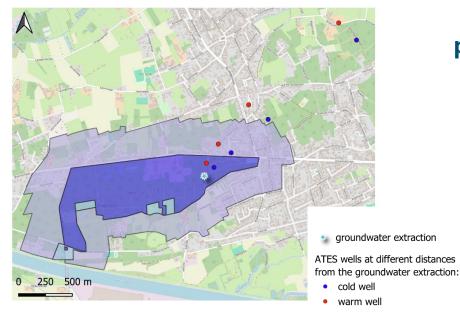
• AC member involvement

Semi-structured interviews | meetings | workshops

This afternoon

- Workshop parallel sessions
- Case studies on multifunctional use
 - Shallow: groundwater extraction and aquifer thermal energy storage
 - Deep: geothermal energy extraction and gas storage
 - Deep: long term geothermal (multiple geothermal project) \rightarrow not today
- PC&I and CLD
- AC meeting report + outcomes (PC&I and CLD)
- Invitation to further have (bilateral) discussions on PC&I and CLD
- Suggestions? Specific questions?

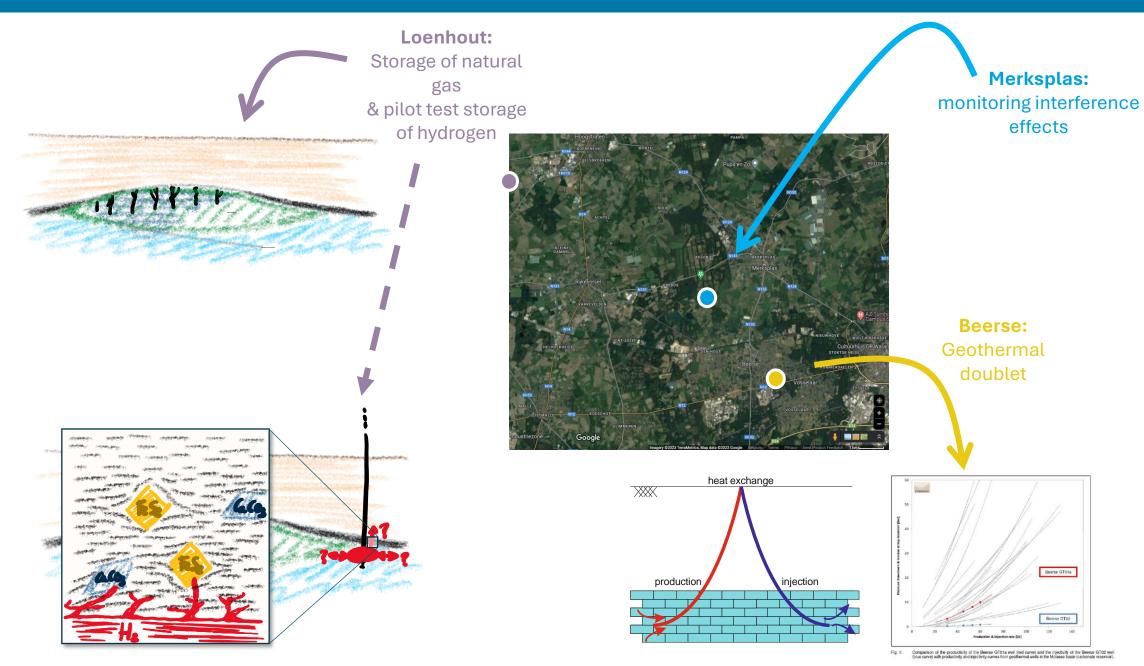

Case studies


Multifunctional subsurface use

Case study 1: groundwater extraction & ATES

Case study 2: deep geothermal energy & gas storage

Groundwater extraction for drinking water supply



What happens whe **ATES** is near or within the groundwater protection zones?

	Aquiter Thermal Energy Storage (ATES)						
	Heating in winter		Cooling in summer				
	20-25 °C 40 heat pump -		5-10 °C – – 20- heat pump –	25 °C '			
		Contraction of the second					
en	n 5-10 °C 15-18 °C 5-10 °C 15						
2	24 hours advection distance	60 days advection distance	1 year advection distance	5 years advection distance			
?	advection		1 year advection distance	5 years advection distance			
Diterement	advection		<section-header> 1 year advection 0</section-header>				

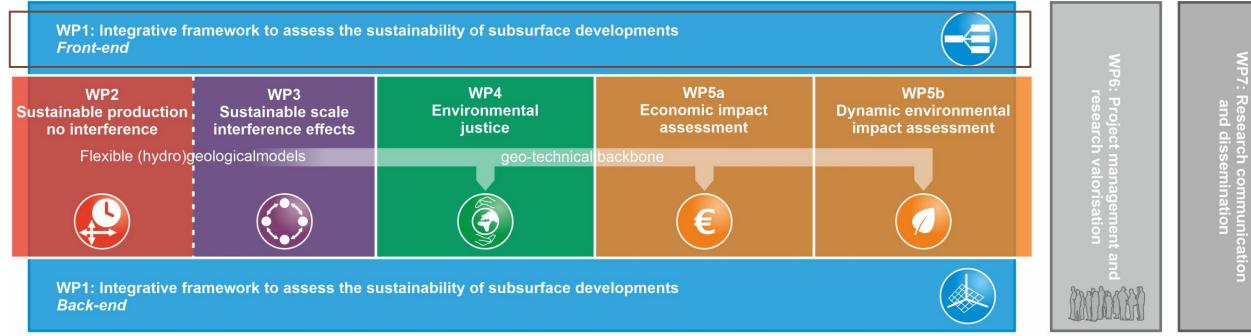
Aquifer Thermal Energy Storage (ATES)

Case study 2: Deep geothermal energy & gas storage

Parallel sessions

Application of the PC&I framework for sustainable subsurface management Development of a Causal Loop Diagram (CLD)

Sustainability? → PC&I framework


→ Principles: these are the fundamental rules that a subsurface use must meet to be considered sustainable. Principles are formulated as a commandment. In this way, principles define sustainable use of the subsurface.

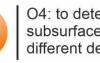
→ Criteria: each principle may contain several criteria. These criteria are the conditions that must be met to satisfy the principle with which they are associated. The criteria are formulated to enable judgment.

→Indicators: indicators are the measurable variables that make it possible to assess whether or not a particular criterion or precondition is met. Indicators can be quantitative, qualitative, continuous or discrete. Generally, the definition of indicators involves the definition of a standard/threshold that sets a boundary between compliance and noncompliance with a criterion, and the definition of a method, tool or instrument used to measure the indicator.

The PC&I framework

- VPO assignment: a general PC&I framework for the sustainable management of the deep subsurface was developed
- For each case study: to apply this PC&I framework to evaluate
 - whether and
 - under which conditions the multifunctional use of the subsurface can be considered sustainable

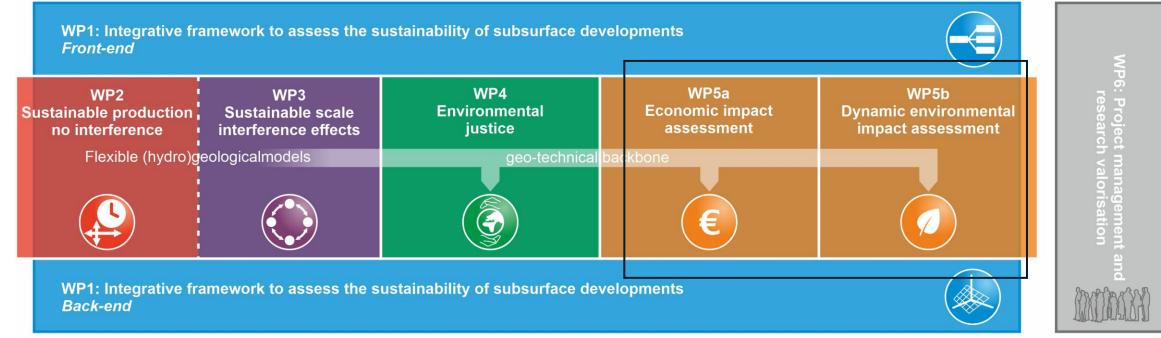
Linking to the objectives


O1: to understand what sustainable management of geological resources involves and how to measure it

O2: to develop flexible (hydro)geological F models to determine hydrogeological threshold values for the identified sustainability indicators

O3: to determine the social impacts of subsurface utilization, considering tenets of environmental justice

O4: to detemine the economic impacts of subsurface utilization in time, taking into account different development options

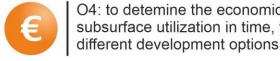

O5: to determine the changes in environmental impact resulting from subsurface utilization, taking into account the time at which these impacts occur

O6: to integrate the calculated environmental and economic values together with hydrogeological value into a multi-dimensional decision support framework

Causal loop diagram (CLD)

- Geological resources are considered a geosystem which interacts with the above-ground environment (also a system)
- What is a system? A system is a network of multiple variables that are connected to each other through causal relationships
- System thinking? A common concept for understanding how causal relationships and feedbacks work in an everyday problem
- CLD: to explicitly map the understanding of the problem and making it transparent and visible for others
- \rightarrow To understand relationships between the system components
- \rightarrow To surface sustainability challenges
- \rightarrow To look for leverage/solutions

Linking to the objectives



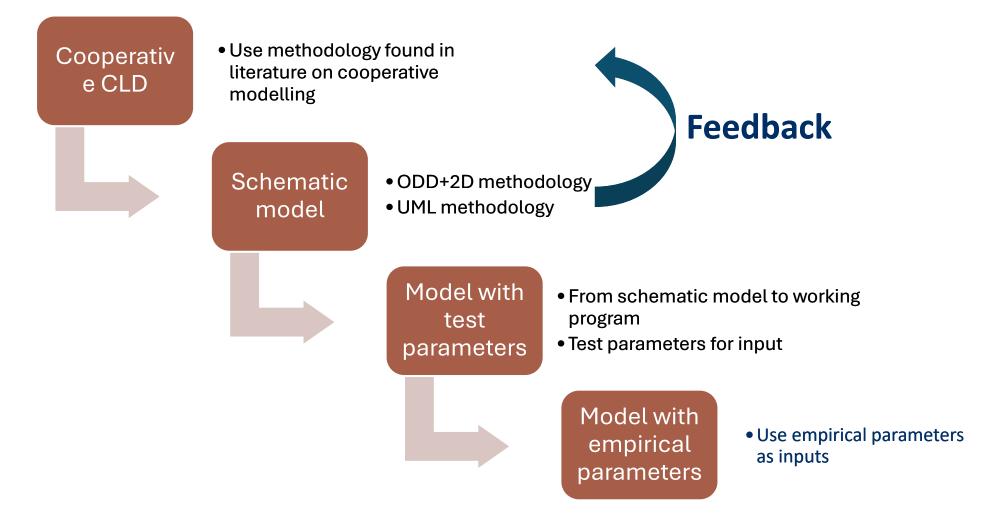
O1: to understand what sustainable management of geological resources involves and how to measure it

O2: to develop flexible (hydro)geological models to determine hydrogeological threshold values for the identified sustainability indicators

environmental justice O4: to detemine the economic impacts of subsurface utilization in time, taking into account

O3: to determine the social impacts of

subsurface utilization, considering tenets of


O5: to determine the changes in environmental impact resulting from subsurface utilization, taking into account the time at which these impacts occur

WP7: Research communicatio and dissemination

O6: to integrate the calculated environmental and economic values together with hydrogeological value into a multi-dimensional decision support framework

Causal Loop Diagrams (CLDs)

Parallel sessions

Application of the PC&I framework for sustainable subsurface management Development of a Causal Loop Diagram (CLD)

Parallel sessions

- Case study 1: groundwater extraction & ATES
- Case study 2: deep geothermal energy & gas storage
- → Apply PC&I to Case study 1 & 2
- → Apply CLD to Case study 1 & 2

Parallel sessions – Round 1 (13.30)

PC&I – Case study 1	PC&I – Case study 2	CLD – Case study 1	CLD – Case study 2
Hanne Lamberts	Alexandra Van Cammeren	Alexander Van Overmeiren	Matti Buyle
Tine Compernolle	Anne Bergmans	Thom yrmar	José Rodriguez
Luka Tas	Kris Piessens		Kris Welkenhuysen
Ann Elen	Carolin Wallmeier		Alex Daniilidis
Tahnee Van Steenbrugge	Stijn Bos		Dominique Ceursters
	Laurent Wouters		Johanna Van Daele
	Helga Ferket		Boris Dehandschutter
	Tinne Snoeijs		Stijn Kuypers
	Hans Veldkamp		Frans Denayer

Parallel sessions – Round 2 (15.00)

PC&I – Case study 1	PC&I – Case study 2	CLD – Case study 1	CLD – Case study 2
Hanne Lamberts	Alexandra Van Cammeren	Alexander Van Overmeiren	Matti Buyle
Anne Bergmans	Tine Compernolle	Thomas Hermans	José Rodriguez
Brent E	Kris Welkenhuysen	Luka Tas	Kris Piessens
	Alex Daniilidis	Ann Elen	Carolin Wallmeier
	Dominique Ceursters	Laurent Wouters	Stijn Bos
	Johanna Van Daele	Koen Beerten	
	Boris Dehandschutter	Tahnee Van Steenbrugge	Helga Ferket
	Stijn Kuypers		Tinne Snoeijs
			Hans Veldkamp
	Frans Denayer		

Advisory Committee – 26 February 2024

Instructions

• Principles, Criteria and Indicators (PC&I) framework

- <u>Principles</u>: relate to the multiple functions of the subsurface
- Criteria: conditions that must be met to comply with a particular principle
 - Criteria are more concrete than principles and easier to assess and link to indicators
- <u>Indicators</u>: variables of any kind that can be used to assess whether a particular criterion has been met (or not)
 - Variables must be measurable to assess if criteria is met (or not)
- Goal of PC&I: evaluating the sustainable management of subsurface activities
- Principles already defined \rightarrow see poster

Instructions

- Today: look at criteria and answer the following questions in group
 - a) Are the criteria relevant?
 - b) How can the criteria be translated to the case?
 - c) Are there criteria missing?
- Look at principle 1, 2 & 3 for one case → pay attention to the time!
 - Round 1: start with principle 1
 - Round 2: start with principle 3
- 1 hour 15 minutes for the case \rightarrow 20-25 minutes per principle

Wrap-up

Thank you!