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Preface

Information Geometry applies differential geometry to study statistical models. It
considers manifolds of probability measures. If the model is parameterized then
the natural metric on the tangent spaces is given by the Fisher information matrix.
The work of Amari [27, 45] introduced the notion of a dually-flat geometry. It pro-
vides the structure for the present course. Recent books on Information geometry
are (Amari, 2016) [64] and (Ay et al, 2017)[65].

Quantum Statistics finds its origin in Physics where Thermodynamics, a discipline
developed in the nineteenth century, Statistical Physics as formulated in the book
of (Gibbs, 1901) [1] and Quantum Mechanics (Heisenberg, 1925) [2] merge into
Quantum Statistical Physics.

Quantum Statistics is a non-commutative extension of Statistics. It is therefore ob-
vious to generalize Information Geometry to this non-commutative context. This
is the subject of the present course. Early efforts in this direction include the works
of Hasegawa [33, 40, 41], Petz [34, 41].

The course is introductory. It is not a review of the subject. Many interesting
topics have been omitted. Many interesting papers are not cited. The topics that
are discussed can often be treated in a more general way. A coherent picture of the
subject is more important than a complete picture. I want to apologize when you
feel I am giving too many details. My experience is that students may get lost on
places where experts want to speed up.

Throughout the course the dimension of the involved Hilbert spaces is assumed to
be finite. The commutative equivalent is the assumption that the event space is a
finite set. This assumption reduces the technicality of the subject in a considerable
manner. To be honest, another reason is that not all of the obstacles being raised
by the infinite-dimensional case have been solved. At the end of the last chapter
some of these difficulties are shortly mentioned.

An effort is done to make the text self-contained. Never the less it is assumed that
the audience masters a substantial amount of mathematics. A good knowledge of
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Functional Analysis, in particular the functional analysis of matrix algebras, is re-
quired. More evolved items can be found for instance in the textbook of Rudin [29].
At some places the books of Kato [9] on linear operators and of Bratelli-Robinson
[22] on operator algebras are referred to. A basic knowledge of Differential Ge-
ometry and an introductory knowledge on Information Geometry are required as
well.

Chapter 1 contains a short introduction on quantum statistics with emphasis on the
C∗-algebraic approach. The need for a non-commutative extension of statistics is
explained. As an example a historical experiment in the realm of quantum physics
is reported. The proof is given that the experiment cannot be modeled using stan-
dard statistics. The example comes back in the final chapter where the quantum
modeling is presented.

Chapter 2 introduces the Bures metric. There exists an extensive literature on the
topic because of its use in Quantum Information theory. However, in the latter do-
main the original introduction by Bures [13] is largely neglected. Instead, the re-
formulation by Uhlmann [19] is used. The Bures version is followed here because
it uses the C∗-algebraic context and because it is close in spirit to the Wasserstein
metric of commutative statistics.

The m-connection is introduced. Its geodesics are convex combinations. Deriva-
tives of geodesics define tangent vectors. The metric on the tangent planes is ob-
tained by taking derivatives of the square of the Bures distance. The calculations
are complicated by non-commuativity and require the notion of a symmetric log-
arithmic derivative.

Chapters 3 to 5 deal with the Bogoliubov metric. It is obtained by taking deriva-
tives of Umegaki’s relative entropy. The notion of an exponential arc is introduced.
They are the geodesics of the e-connection. In the last section of Chapter 3 an al-
ternative definition of an exponential arc is defined. The calculations make use of
Tomita-Takesaki theory. An example shows that the two definitions are distinct.

Chapter 4 discusses the dually-flat geometry and its Legendre structure.

The topic of Chapter 5 is the notion of a quantum exponential family of states.
They define a submanifold of the manifold of faithful states. It is shown that the
hoistorical experiment discussed in Chapter 1 can be modeled by a quantum ex-
ponential family. The last section gives a short discussion of the difficulties en-
countered when one tries to generalize the present theory to the context of infinite-
dimensional Hilbert spaces.



Contents

1 Quantum Probability 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum expectations . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The algebra of n-by-n matrices . . . . . . . . . . . . . . . 2
1.2.2 Expectation values . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Density matrices . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Classical probability . . . . . . . . . . . . . . . . . . . . 5
1.2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Conditional probabilities . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Empirical data . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Breaking of statistical independence . . . . . . . . . . . . 7

1.4 A historical experiment . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 The EPR paradox . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 The Bell inequalities . . . . . . . . . . . . . . . . . . . . 10

2 The Bures metric 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The Bures distance . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Bures’ definition . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Technicalities . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 The theorem . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Geometry of the manifold of states . . . . . . . . . . . . . . . . . 20
2.3.1 Tangent vectors . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 The symmetric logarithmic derivative . . . . . . . . . . . 22
2.3.3 Riemannian geometry . . . . . . . . . . . . . . . . . . . 24
2.3.4 Affine coordinates . . . . . . . . . . . . . . . . . . . . . 26
2.3.5 Special role of the tracial state . . . . . . . . . . . . . . . 28

2.4 The case n=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



vi CONTENTS

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 The Bloch sphere . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Exponential arcs 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Useful identities . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 The Kubo transform . . . . . . . . . . . . . . . . . . . . 35

3.2 Bogoliubov’s metric . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Umegaki’s relative entropy . . . . . . . . . . . . . . . . . 37
3.2.2 Exponential arcs . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Geodesic completeness . . . . . . . . . . . . . . . . . . . 38
3.2.4 Bogoliubov’s inner product . . . . . . . . . . . . . . . . . 40

3.3 Coordinate representation . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Affine coordinates . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 The metric tensor . . . . . . . . . . . . . . . . . . . . . . 43

3.4 An alternative approach . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 The GNS construction . . . . . . . . . . . . . . . . . . . 44
3.4.2 Tomita-Takesaki theory . . . . . . . . . . . . . . . . . . . 45
3.4.3 Generalized Radon-Nikodym derivatives . . . . . . . . . 48
3.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 The dually flat geometry 55

4.1 A flat geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1 Parallel transport . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Dual geometries . . . . . . . . . . . . . . . . . . . . . . 56
4.1.3 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.4 Coordinate representation . . . . . . . . . . . . . . . . . 58
4.1.5 Covariant derivatives . . . . . . . . . . . . . . . . . . . . 59
4.1.6 Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 The Legendre structure . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 A Hessian geometry . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 The tracial state . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.5 Fréchet derivatives . . . . . . . . . . . . . . . . . . . . . 64

5 Exponential families 65

5.1 A family of states . . . . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS vii

5.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Tangent vectors . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.4 The Fisher information matrix . . . . . . . . . . . . . . . 67
5.1.5 Pythagorean relation . . . . . . . . . . . . . . . . . . . . 68

5.2 The dual geometry . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 The e-connection . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 The potential Φθ(A) . . . . . . . . . . . . . . . . . . . . 70

5.3 Quantum estimation . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Quantum measurements . . . . . . . . . . . . . . . . . . 72
5.3.2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.1 The Pauli spin . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Two spins . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Infinite-dimensional case . . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 78



viii CONTENTS



Chapter 1

Quantum Probability

1.1 Introduction

Quantum Probability and Quantum Statistics are being used in many areas beyond
Quantum Mechanics. Some of these areas carry names such as Quantum Cogni-
tion, Quantum Social Science, Quantum Biology. Early papers are [36, 42, 53,
56, 60, 61, 63]. A recent mathematical paper applies the quantum formalism to
Colorimetry [68].

Quantum statistics differs in a number of aspects from conventional statistics.

The most fundamental assumption of probability theory is that there exists a sam-
ple spaceX . The measurable subsets ofX are called events. In some applications
this assumption is violated by empirical data to such an extent that the concept of
a sample space must be abandoned. This is the case in Quantum Mechanics.

It is quite common not to emphasize that random variables are functions of events.
Rather one considers them as the basic quantities of probability theory. The gen-
eralization then consists of allowing that the product of two random variables is
non-commutative. This can be done in two ways. Either one replaces the usual
product of two functions by some non-commutative alternative. Or, one abandons
the notion of a function and accepts that random variables are abstract quantities
that receive their meaning from the fact that one can assign values to them by ob-
servation or experiment.

Section 1.3 focuses on the concept of conditional probability. The observation or
measurement of two statistically independent quantities can introduce dependency.
This is known as breaking of statistical independence. The obvious explanation is
that the measurement of one quantity influences the outcome of subsequent mea-
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2 CHAPTER 1. QUANTUM PROBABILITY

surements. In statistical terms this means that what is measured is a conditional
probability given the outcome of the first measurement.

Quantum conditional expectations have been introduced in the context of Quantum
Information Theory. See for instance [57]. However, the notion of conditional
probability used when accumulating experimental data is the conventional one.
Quantum conditional expectations are used in theoretical modeling only.

Theoretical arguments prove that only non-classical (i.e. quantum or non-commutative)
models can explain quantum experiments. To illustrate this point one historical ex-
periment featuring quantum entanglement is discussed in Section 1.4.

The next Section introduces some elements of quantum probability. TheC∗-algebraic
approach is highlighted. It is argued that classical probability theory is a special
case of the more general C∗-algebraic formulation.

1.2 Quantum expectations

1.2.1 The algebra of n-by-n matrices

The product of two n-by-n matrices T and V is in general non-commutative. The
space B(Cn) of all n-by-n matrices with complex entries forms a Banach algebra
for the norm defined by

||T || = sup{|Tx| : x ∈ C
n, |x| = 1}. (1.1)

Here, the length of a vector x in Cn is defined by

|x| =

√

√

√

√

n
∑

i=1

|xi|2.

An important property of the supremum norm is that

||TV || ≤ ||T || ||V || for all T, V.

The hermitian conjugate of a matrix T is denoted T ∗ and is called the adjoint of
T . An operator T is self-adjoint if T ∗ = T . An operator T is positive, notation
T ≥ 0, if it is self-adjoint and all its eigenvalues are non-negative.

A special property of the norm (1.1), in relation to the adjoint operation, is that

||T ||2 = ||T ∗T || for any T in B(Cn).
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This is called the C∗-property of the norm. It makes the Banach algebra B(Cn)
into a C∗-algebra.

By definition, a C∗-algebra A is a Banach algebra with an adjoint operation for
which the C∗-property holds, in addition to some other obvious requirements. For
the sake of simplicity only C∗-algebras are considered that have a unit element.
The latter is denoted I in what follows.

An immediate consequence of the C∗-property is that ||T ∗|| = ||T || for any T in
A. Further properties of positive elements in a C∗-algebra A are

- T ≥ 0 if and only if there exists V ≥ 0 in A such that T = V 2;

- T ∗T ≥ 0 for any T in A;

- If T ≥ 0 then T ≤ ||T || (i.e. ||T ||I− T ≥ 0).

In the context of C∗-algebras the terms ’hermitian matrix’ and ’positive-definite
matrix’ are not used. They are replaced by ’self-adjoint operator’, respectively
’strictly positive operator’. The ’hermitian conjugate’ A† becomes the ’adjoint
operator’ and is denoted A∗. Note that by definition a positive operator is also
self-adjoint. An element A of a C∗-algebra A is positive if and only if there exists
B in A such that A = B∗B.

A subclass of the C∗-algebras is formed by the von Neumann algebras. Instead
of the abstract definition of the latter a practical characterization is given. The
commutantA′ of a setA of bounded linear operators on a Hilbert space H consists
of all bounded linear operatorsB each of which commutes with all elements of A.
This is

A′ = {B ∈ B(H ) : BA = AB for all A ∈ A}.

A C∗-algebra A ⊂ B(H ) is a von Neumann algebra if it is equal to its bicommu-
tant A′′. In general is A ⊂ A′′. If A is a commutative C∗-algebra then one has
A ⊂ A′ ∩ A′′.

1.2.2 Expectation values

In statistics the expectation value E f of a random variable f is determined by a
probability measure µ.

E f =

∫

Ω

f(x)dµ(x).

It has the following properties.

- The map f 7→ E f is a linear functional;
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- The expectation E f of a positive random variable f cannot be negative;

- The expectation E 1 of the constant function 1 equals 1.

These three properties are carried over to quantum statistics. The expectation value
ET of a matrix T is determined by a state ω. The latter replaces the probability
measure µ and inherits the above mentioned properties.

Definition 1 A state ω of a C∗-algebra A is a complex-valued linear function of
A with the properties that

- ω(T ∗T ) ≥ 0 for all T in A (positivity);

- ω(I) = 1 (normalization).

From the positivity condition it follows that

|ω(T )| ≤ ||T || for all T in A. (1.2)

In particular, any state ω is continuous in norm.

As an example, consider a column vector x in Cn and assume it is normalized to
1, i.e. xTx = 1. Then a state ωx on B(Cn) is defined by

ωx(V ) = xTV x, for any n-by-n matrix V .

Such a state is called a vector state.

1.2.3 Density matrices

A density matrix ρ is a non-negative-definite matrix with trace equal to 1. Its
eigen values are non-negative and sum up to 1. Hence, they can be interpreted as
probabilities.

More generally, a density matrix ρ is a positive traceclass operator with trace equal
to 1.

Any state ω on the algebra B(Cn) of n-by-n matrices is of the form

ω(V ) = Tr ρ V,

where ρ is a density matrix. Conversely, given a density matrix ρ then the above
expression defines a state ω on B(Cn).
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1.2.4 Classical probability

An important advantage of the C∗-algebraic approach is that it unifies quantum
statistics with classical probability theory.

LetX be a locally-compact Hausdorff space. LetC0(X) denote the Banach algebra
of complex-valued continuous functions on X that vanish at infinity. The norm is
the supremum norm. The adjoint of a function is the complex-conjugate function.
It is a C∗-algebra. If X is not compact then it is a C∗-algebra without unit. Then
the constant functions must be added to make it into a C∗-algebra with unit.

Any probability measure µ on X defines a state ω on C0(X) by

ω(A) =

∫

X

A(x)dµ(x).

Conversely, every state ω on C0(X) defines a Radon probability measure on X .

Alternatively, consider the algebra A = L∞(Rn,C) of all essentially bounded
complex functions on Euclidean space Rn with its Lebesgue measure. It is a
von Neumann algebra. Each function A in A acts by pointwise multiplication
(Af)(x) = A(x)f(x) as a bounded operator on the Hilbert space of square-
integrable complex functions L2(R

n). The commutant A′ of A coincides with
A. See [24], Part I, Ch. 7, Thm. 2.

Any normalized element f of L2(R
n) determines a vector state ωf on A by

ωf(A) =

∫

Rn

A(x)|f(x)|2dx.

1.2.5 Notes

In 1925 Heisenberg [2] proposed to represent observable quantities by matrices.
This unconventional idea was the birth of Quantum Mechanics. By assuming that
position and velocity of a quantum particle are non-commuting variables he could
explain experimental data that classical mechanics cannot explain.

In the second half of the twentieth century mathematicians and mathematical physi-
cists developed a formulation of quantum mechanics and quantum statistical me-
chanics in terms of C∗-algebras See the introduction of [22] for a short history.

C∗-algebras have been studied extensively by J. Dixmier [8, 20]. A subclass of
the C∗-algebras is formed by the von Neumann algebras [10, 24]. These are also
called W ∗-algebras.
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1.3 Conditional probabilities

1.3.1 Empirical data

Consider a probability space X, µ. The probability of an event A ⊂ X is denoted
p(A) and is given by

p(A) =

∫

X

IA(x)dµ(x),

where IA(x) equals 1 when x ∈ A and 0 otherwise. The expectation of random
variable f is denoted Eµf and is given by

Eµf =

∫

X

f(x)dµ(x).

The conditional probability of an event B given an event A with non-vanishing
probability is denoted p(B|A) and is defined by

p(B|A) =
p(A ∩B)

P (A)
.

This is known as Kolmogorov’s definition of conditional probability.

The conditional expectation of a random variable f given an event A with non-
vanishing probability p(A) is given by

Eµf |A =
1

p(A)
Eµf IA.

Statistical Inference is concerned with the analysis of empirical data with the intent
to describe the data by a probability distribution on the sample space X . See for
instance the book of Cox, [54]

In the most common approach a statistical model is available. It contains a few
parameters the value of which one tries to estimate from the available data. This is
known as parameter fitting. The obvious example is the linear regression model.
In the present context one assumes that a non-commutative model is needed to
describe the data.

Part of the course deals with model-independent statistical inference. One reason
for abandoning models may be that in certain cases no model exists that explains
the data. Another motivation is that the acceptation of a model introduces a bias.
It is important that the acquisition of data and the preliminary analysis is not con-
taminated by model assumptions. The drawback of a model-free approach is that
one looses the comfort of working with a small number of meaningful parameters.
Currently available computer power can partly compensate for that.
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1.3.2 Updating

Starting point is the availability of a prior probability measure µ either obtained
from an ’educated guess’ or as the result of previous observations. When new data
become available an update procedure is used to select the posterior probability
space. In what follows it is denoted X, ν. The corresponding probability of an
event A is denoted q(A).

Consider now the situation that two independent eventsA andB are measured and
that the results of the measurements are used to verify their independence.

The outcome of repeated experiments is the empirical probability of the events A
and B, denoted pemp(A) and pemp(B), and the empirical conditional probabilities
pemp(A|B) and pemp(B|A). The question at hand is then to establish a criterion for
finding an update ν of the probability distribution µ that is as close as possible to
µ while reproducing the empirical results as well as possible.

The event A defines a partition A,Ac of the probability space X, µ. Here, Ac de-
notes the complement ofA inX . In what follows a slightly more general situation
is considered in which the eventA is replaced by a partition (Ai)ni=1 of the measure
space X, µ into subsets with non-vanishing probability. The notations pi and µi
are used, with

pi = p(Ai) and dµi(x) =
1

pi
IAi

(x)dµ(x). (1.3)

Introduce the random variable g defined by g(x) = iwhen x ∈ Ai. The conditional
random variable Eµf |g is then defined by

Eµf |g =
∑

i

piEµf |Ai.

Repeated measurement of the random variable g yields the empirical probabilities

pemp

i = Emp Prob {g(x) = i}.

They may deviate from the prior probabilities pi. In addition one also measures
the conditional probabilities

pemp(B|Ai) = Emp Prob of B given that g(x) = i.

1.3.3 Breaking of statistical independence

Breaking of statistical independence is a known phenomenon, illustrated by the
following example.
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Consider three binary variables. They take values 0 and 1 with equal probability.
Let

A = {101, 111, 100, 110}, (1.4)

B = {011, 111, 010, 110}, (1.5)

C = {101, 010, 110}.

Then one has p(A) = p(B) = 1/2 and p(A ∩ B) = p({111, 110}) = 1/4 =
p(A)p(B). Hence, A and B are statistically independent. However, after condi-
tioning on C one obtains

p(A ∩B|C) = 1

3
6= p(A|C) p(B|C) = 4

9
.

One concludes that the conditioning on C breaks the independence of the events
A and B. The third binary variable is irrelevant for the events A and B and is
therefore called a hidden variable. It is relevant for the event C and makes A and
B dependent after conditioning on C.

The EPR paradox of quantum mechanics [3, 7], discussed further on, concerns a
breaking of statistical independence that cannot be explained by assuming one or
more hidden variables [11, 21]. Experimental verification followed in [25]. The
analysis of the experimental data is done in a model-independent way precisely
because the intention is to show that no model of classical statistics can explain
the data. Conditional probabilities are measured in an empirical manner without
making use of the Kolmogorovian definition of conditional probabilities.

Two statistically independent events A and B are monitored in a sequence of ex-
periments. If A holds then one verifies whether B or its complement Bc holds.
This yields the empirical probabilities pemp(B|A) and pemp(Bc|A), the sum of which
equals 1. Breaking of statistical independence is then verified by comparing pemp(B|A)
to pemp(B).

1.4 A historical experiment

1.4.1 The EPR paradox

Let us analyze a historical experiment [25]. In the lab two photons leave at the same
moment of time in opposite directions. The photons have opposite polarization.
However, the actual value of the polarization is not known and cannot be known
in advance. The point where the photons are generated is called the source. Two
detectors are placed at equal distance from the source. Two random variables A
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Figure 1.1: Experimental setup

and B are measured. Their value is either 1 if a photon is detected or 0 otherwise.
Whether a photon is detected or not depends on whether the polarization of the
photon matches the position of the polarizer. The experimental setup contains one
free parameter φ, which is the angle of a polarizer placed in the beam reaching one
of the two detectors. The other detector has a polarizer with a fixed orientation.

A puzzling situation arises when one tries to correlate the measurements of the
two detectors. The experimental result [25] is compatible with the theoretical pre-
diction [11] that the conditional probability of a coincidence of photons (i.e. A =
B = 1) satisfies the relation

pemp(B|A) = pemp(B) + κ cos(2φ), (1.6)

with κ 6= 0. However, (1.6) is not what one expects intuitively.

The photon leaves the source with arbitrary polarization. Half of the time it has the
correct polarization to be detected. If the polarization is wrong then no photon is
detected. Hence, the prior probabilities are p(A) = p(B) = 1/2. The two events
A and B are statistically independent. This is,

p(A ∩ B) = p(A)p(B).

From the Kolmogorovian definition

p(B|A) = p(A ∩ B)

p(A)
(1.7)

one expects that the constant κ should vanish, which is experimentally not the case.
The common explanation is that the detection of one of the events influences the
other event. For Einstein, Podolsky and Rosen [3] such a result was not acceptable.
The two measurements are statistically dependent, even if they are made at distant
locations and do not communicate by any other means. Nowadays the phenomenon
is well-established altough it remains difficult to understand what is going on.
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A = {(1, 0), (1, 1)} p(A) = 1
2 q(A|A) = 1 q(A) = 1

2
L = {(1, 0)} p(L) = 1

4 q(L|A) = sin2 φ q(L) = 1
2 sin

2 φ
H = {(1, 1)} p(H) = 1

4 q(H|A) = cos2 φ q(H) = 1
2 cos

2 φ
B = {(0, 1), (1, 1)} p(B) = 1

2 q(B|A) = cos2 φ q(B) = 1
2

Table 1.1: Prior and posterior probabilities in the case of the quantum example. The
sets A and B are entangled by the measurement when cos2 φ 6= 1/2. Indeed, A and B are
independent while after the measurement A and B are dependent because q(A ∩ B) =
q(H) = (1/2) cos2 φ 6= q(A)q(B) = 1/4.

The reader interested in exploring more recent developments in Quantum Optics
is referred to the introductory text of [52].

Let us analyse the experimental setup in more detail.

The probability space is X, µ with X = {0, 1} × {0, 1} and probability 1/4 for
any of the atomic sets of X . The two events under consideration are

A = {(1, 0), (1, 1)} and B = {(0, 1), (1, 1)}.

They have equal probability and are independent of each other.

The measurement function g returns 1 on the sets containing (1, 0) and/or (1, 1)
and 2 otherwise. The partition (Ai)i consists of 2 sets of equal probabilityA1 = A
and A2 = Ac. The measurement yields pemp

1 = pemp

2 = 1/2 = p1 = p2. The updated
probability measure ν is expected to coincide with the prior probability measure
µ because µ is confirmed by the locally available data. However, measurement of
conditional probabilities shows that the posterior ν differs from the prior µ.

The empirical data are internally consistent. By this is meant that there exists a
probability distribution ν which reproduces them. The complete specification of
the updated measure ν is found in Table 1. In this table the conditional probabilities
q(·|·) are calculated starting from (1.6).

1.4.2 The Bell inequalities

For a review on Bell’s inequalities, see [21].

Before the measurement takes place the events A and B are independent of each
other. After the measurement they turn out to be dependent except when the angle
φ, controlled by the experimenter, satisfies cos2 φ = sin2 φ = 1/2. The standing
explanation is that both measurements influence each other. Quantum Mechanics



1.4. A HISTORICAL EXPERIMENT 11

Figure 1.2: Illustration of the proof of the Bell inequality

explains this phenomenon adequately. Still, it remains difficult to understand why
it happens.

One suggestion is that the measure space X, µ is a subspace of a larger measure
space Y, ν and that the dependence ofA andB originates from the projection onto
the subspace. This is known in quantum mechanics as the hidden variable assump-
tion. If the assumption holds then the projected probabilities satisfy the Bell in-
equalities [7]. The data of the experiment violate these inequalities. One concludes
therefore that the hidden variable assumption, in combination with independence
in the larger space, is not appropriate to explain the experimental outcome.

Let us reproduce here the mathematical argument. Introduce the notation

q(C) =

∫

Y

IC(y)dν(y).

For each angle φ let iφ be a measurable map from Y to X such that pemp

φ ◦ iφ = q.
It follows that

pemp(B ∩A) = q(i−1
φ (B ∩ A)) ≤ q(Bφ ∩Aφ).

Independence of the inverse images Aφ = i−1
φ (A) and Bφ = i−1

φ (B) implies that
q(Aφ ∩ Bφ) = q(Aφ)q(Bφ). Hence, one obtains

pemp(B ∩ A) ≤ q(Bφ)q(Aφ) = pemp(B)pemp(A).

The experimental data give pemp(A) = pemp(B) = 1/2 and

pemp(B ∩ A) = 1

4
+
κ

2
cos 2φ.

The requirement that follows is thatκ cos 2φ ≤ 0 for all anglesφ. The latter implies
that κ = 0, which is experimentally violated.
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Chapter 2

The Bures metric

2.1 Introduction

This course deals with the study of the manifold Mn of faithful states on the von
Neumann algebra B(Cn) of n-by-n matrices with complex entries. Starting point
is a divergence function D(ω1||ω2). It estimates how ’close’ two states ω1 and ω2

are.

A state ω on a von Neumann algebra A is said to be faithful if ω(A∗A) = 0 implies
A = 0 for any A in A. In the case of the algebra of n-by-n matrices it is faithful
when the corresponding density matrix ρ is invertible.

A divergence function D on the manifold Mn is a smooth function Mn ×Mn 7→
[0,+∞) satisfying

D(ω1||ω2) = 0 if and only if ω1 = ω2.

Note that a divergence function is called a relative entropy in the Physics Literature.

From the divergence function one can derive an inner product on the tangent spaces
of the manifold. Two choices of divergence function are discussed during the
course. The topic of the present Chapter is the divergence function obtained by
taking the square of the Bures distance.

The mathematical work of Bures [13] was picked up by Uhlmann [19, 46], by
Jozsa [35] and by Dittmann [38] between others. Independently, Wootters [26]
introduced a notion of quantum statistical distance. The Bures distance found wide
acceptance in the domain of Quantum Information Theory [57]. As a consequence
there exists an extensive literature on the topic. For a survey see Sommers and
Życzkowski [48].

13
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The classical analogue of the Bures distance is the Hellinger distance. The latter
is sometimes called the statistical distance. The Bures distance is related to the
Wasserstein distance. The Fubini-Study metric is related [39] to the Bures metric.
It is not discussed in the present course.

The relative entropy of Umegaki [5] and the corresponding inner product of Bo-
goliubov are discussed in Chapter 3.

A rather detailed treatment of Bures’ original work is given because it is based on
the C∗-algebraic approach and fits well with the approach taken in later Chapters.

2.2 The Bures distance

2.2.1 Bures’ definition

Consider the tensor product Cn⊗Cn of the Hilbert space Cn with itself. It is again
a complex Hilbert space with inner product defined by linear extension of

(a⊗ b, c⊗ d) = (a, c)(d, b).

Note that it is linear in a and d and anti-linear in b and c.

Lemma 1 The state ω determined by the density matrix ρ can be written as

ω(A) = Tr ρA = (A⊗ IΩ,Ω), A ∈ A. (2.1)

with Ω a vector in Cn ⊗ Cn.

Such a vector exists. Indeed, let (fi)i be an orthonormal basis in which ρ is diag-
onal. Let ρfi = pi fi. Then one can take Ω =

∑

i

√
p
i
fi ⊗ fi.

Let S(ω) denote the set of all vectors Ω in Cn ⊗ Cn for which (2.1) holds. The
definition of Bures [13] applied to this special situation reads

d(ω1, ω2) = inf{||Ω1 − Ω2|| : Ω1 ∈ S(ω1),Ω2 ∈ S(ω2)}.

Proposition 1 d(ω1, ω2) is a distance function.

Proof

The proof is straightforward except for the non-degeneracy. Let ǫ > 0. Then
d(ω1, ω2) = 0 implies that Ω1 ∈ S(ω1) and Ω2 ∈ S(ω2) exist such that ||Ω1 −
Ω2|| ≤ ǫ. This gives

|ω1(A)− ω2(A)| = |(A⊗ IΩ1,Ω1)− (A⊗ IΩ2,Ω2)|
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= |(A⊗ IΩ1,Ω1 − Ω2)− (A⊗ I(Ω2 − Ω1),Ω2)|
≤ |(A⊗ IΩ1,Ω1 − Ω2)|+ |(A⊗ I(Ω2 − Ω1),Ω2)|
≤ ||A|| ||Ω1 − Ω2||+ ||A|| ||Ω2 − Ω1||
≤ 2ǫ||A||.

This shows that ω1 = ω2.

�

2.2.2 Technicalities

In the next Section an explicit expression for Bures’ distance is derived. Some
technical results needed for that follow here.

Lemma 2 If U ∈ A is unitary then

| Tr AU | ≤ Tr (A∗A)1/2, A ∈ A.

Proof

LetA = J |A| denote the polar decomposition of the matrixA. It satisfies J∗j = I

and |A| = (A∗A)1/2.

Let (fi)i be an orthonormal basis which diagonalizes |A|: |A|fi = aifi with ai ≥
0. One has

| Tr AU | = | Tr J |A|U |
= |

∑

i

ai(UJfi, fi) |

≤
∑

i

ai|(UJfi, fi) |.

Because fi and UJfi both have unit length one has |(UJfi, fi)| ≤ 1 so that

| Tr AU | ≤
∑

i

ai = Tr |A| = Tr (A∗A)1/2.

�

Lemma 3 Choose an orthonormal basis (fi)i in C
n. For any vector Φ in C

n⊗C
n

there exist qi ≥ 0 and unitary operators U and V such that

Φ =
∑

i

√
qiUfi ⊗ V fi.
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Proof

By the Schmidt decomposition theorem there exist orthonormal sets (si)i and (ri)i
and complex numbers (λi)i such that

Φ =
∑

i

λi si ⊗ ri.

Take qi = |λi|2 and let λi = eiφi
√
qi. There exists a unitary operatorU which maps

the basis vectors fi onto the basis vectors eiφisi. Similarly, there exists a unitary
operator V which maps the basis vectors fi onto the basis vectors ri. Hence one
has

Φ =
∑

i

λi si ⊗ ri

=
∑

i

√
qi(e

iφisi)⊗ ri

=
∑

i

√
qiUfi ⊗ V fi.

This proves the lemma.

�

Proposition 2 Consider a pair of states ω1, ω2 on B(Cn). For any Ω1 in S(ω1) is

d(ω1, ω2) = inf{||Ω1 − Ω2|| : Ω2 ∈ S(ω2)}.

Proof

Let ρ be the density matrix corresponding with ω1. Let (fi)i be a basis in which ρ
is diagonal. Let ρfi = pifi. Let Ω′

1 =
∑

i

√
pifi ⊗ fi and

HΩ′

1
= (B(Cn)⊗ I)Ω′

1 ⊂ C
n ⊗ C

n.

A linear operator W on HΩ′

1
is defined by

W (A⊗ I)Ω′
1 = (A⊗ I)Ω1, A ∈ B(Cn).

It satisfies

||W (A⊗ I)Ω′
1||2 = ||(A⊗ I)Ω1||2 = ω1(A

∗A) = ||(A⊗ I)Ω′
1||, A ∈ B(Cn).
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Hence, W is isometric and it is well-defined because (A⊗ I)Ω′
1 = 0 implies that

(I ⊗ A)Ω1 = 0. Extend W from HΩ′

1
to all of Cn ⊗ C

n in such a way that it
becomes an unitary operator.

One verifies easily that W commutes with all of B(Cn)⊗ I.

For any Ω2 ∈ S(ω2) is

||Ω1 − Ω2|| = ||WΩ′
1 − Ω2|| = ||Ω′

1 −W ∗Ω2||.

Note that W ∗Ω2 belongs to S(ω2). Indeed, one has

((A⊗ I)W ∗Ω2,W
∗Ω2) = (W ∗(A⊗ I)Ω2,W

∗Ω2) = ((A⊗ I)Ω2,Ω2), A ∈ B(Cn)

because W ∗ commutes with all of A and is an unitary operator. Hence one has

||Ω1 − Ω2|| ≥ inf{||Ω′
1 − Ω′

2|| : Ω′
2 ∈ S(ω2)}.

Similarly is for any Ω′
2 in S(ω2)

||Ω′
1 − Ω′

2|| = ||W ∗Ω1 −W ∗Ω′
2|| = ||Ω1 −W ∗Ω′

2||
≥ inf{||Ω1 − Ω2|| : Ω2 ∈ S(ω2)}.

Combination of both inequalities gives

inf{||Ω1 − Ω2|| : Ω2 ∈ S(ω2)} = inf{||Ω′
1 − Ω′

2|| : Ω′
2 ∈ S(ω2)}.

Hence this quantity does not depend on the choice of Ω1 in S(ω1).

�

2.2.3 The theorem

Theorem 1 (Uhlmann) Let ω1 and ω2 be states defined by the density matrices
ρ1, respectively ρ2. Then the Bures distance between the two states is given by

d(ω1, ω2) =

[

2− 2 Tr
[

ρ
1/2
1 ρ2ρ

1/2
1

]1/2
]1/2

. (2.2)

Proof
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Let ρ1fi = pifi and

Ω1 =
∑

i

√
pi fi ⊗ fi.

By Proposition 2 one has

d(ω1, ω2) = inf{||Ω1 − Ω2|| : Ω2 ∈ S(ω2)},

By Lemma 3 there exist unitary operators U and V and numbers qi ≥ 0 such that

Ω2 =
∑

j

√
qj Ufj ⊗ V fj .

Note that this implies that for any A in A one has

ω2(A) = (A⊗ IΩ2,Ω2)

=
∑

j,k

√
qjqk (A⊗ IUfj ⊗ V fj, Ufk ⊗ V fk)

=
∑

j

qj (AUfj , Ufj).

Hence, if Fj denotes the orthogonal projection ontoCUfj then
∑

j qjFj equals ρ2,
the unique density matrix representing the state ω2.

From the definition of the Bures distance it follows that d(ω1, ω2) is the infimum
of ||Ω1 − Ω2||. Let us now show that ||Ω1 − Ω2|| is always larger than or equal to
the r.h.s. of (2.2).

One has

||Ω1 − Ω2||2 = 2− 2ℜ(Ω1,Ω2)

= 2− 2ℜ
∑

i,j

√
piqj (fi ⊗ fi, Ufj ⊗ V fj)

= 2− 2ℜ
∑

i,j

√
piqj (fi, Ufj) (V fj, fi)

= 2− 2ℜ
∑

i,j

√
qj (

√
ρ1fi, Ufj) (V fj, fi)

= 2− 2ℜ
∑

i,j

√
qj (V fj , fi) (fi,

√
ρ1Ufj)

= 2− 2ℜ
∑

j

√
qj (V fj ,

√
ρ1Ufj)

= 2− 2ℜ
∑

j

(V fj,
√
ρ1
√
ρ2Ufj)
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= 2− 2ℜ Tr U∗√ρ2
√
ρ1V

≥ 2− 2 Tr
√√

ρ1ρ2
√
ρ1 (2.3)

This ends one half of the proof.

Next let us prove that the equality can be reached by an appropriate choice of Ω2

in S(ω2). Use the polar decomposition

√
ρ2
√
ρ1 = J |√ρ2

√
ρ1| = J

[√
ρ1ρ2

√
ρ1
]1/2

to write

2− 2 Tr
[√
ρ1ρ2

√
ρ1
]1/2

= 2− 2 Tr J∗√ρ2
√
ρ1.

Now choose an orthonormal basis (sj)j diagonalizing ρ2, with ρ2sj = qjsj and let
U be the unitary matrix for which sj = Ufj . Further choose V = J∗U . Then Ω2

given by

Ω2 =
∑

j

√
qjUfj ⊗ V fj

belongs to S(ω2). Indeed, one has for A in A

(A⊗ IΩ2,Ω2) =
∑

j,k

√
qjqk (A⊗ IUfj ⊗ V fj , Ufk ⊗ V fk)

=
∑

j,k

√
qjqk (AUfj , Ufk) (V fj, V fk)

=
∑

j

qj (Asj , sj)

= Tr ρ2A
= ω2(A).

Now calculate

||Ω1 − Ω2||2 = 2− 2ℜ(Ω1,Ω2)

= 2− 2
∑

i,j

√
piqj (fi ⊗ fi, sj ⊗ V fj)

= 2− 2ℜ(V fj , fi)(fi,
√
ρ1
√
ρ2sj)

= 2− 2ℜ(V fj ,
√
ρ1
√
ρ2sj)

= 2− 2ℜ Tr J∗√ρ2
√
ρ1

= 2− 2 Tr
[

ρ
1/2
1 ρ2ρ

1/2
1

]1/2

�
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2.2.4 Notes

The quantity

F (ρ1, ρ2) = Tr
[

ρ
1/2
1 ρ2ρ

1/2
1

]1/2

is called the fidelity [35]. See for instance Section 6.1 of [57]. The square of the
fidelity is denoted P (ρ1, ρ2) and is called the transition probability [39, 58]. These
quantities are heavily used in Quantum Information Theory.

The relation between the fidelity of density matrices ρ1 and ρ2 and the square
of the Bures distance between the corresponding states ω1 and ω2 follows from
Uhlmann’s Theorem

d2(ω1, ω2) = 2(1− F (ρ1, ρ2)).

In the commutative case the Bures distance reduces to a multiple of the Hellinger
distance, also called statistical distance, between two discrete probability distribu-
tions. Indeed, when ρ1 and ρ2 commute then the expression for the square distance
simplifies to

d(ρ1, ρ2)
2 = 2

(

1− Tr ρ1/21 ρ
1/2
2

)

= Tr
[

ρ
1/2
1 − ρ

1/2
2

]2

.

Because the matrices ρ1 and ρ2 commute they can be diagonalized simultaneously.
Let (pi)i, respectively (qi)i their eigenvalues. The above expression becomes

d2(ρ1, ρ2) =
∑

i

[
√
pi −

√
qi]

2 .

This is twice the square of the Hellinger distance between the two probability dis-
tributions p and q.

2.3 Geometry of the manifold of states

2.3.1 Tangent vectors

In the present section the state ω is fixed and is assumed to be faithful.

The space TωMn of tangent vectors at the point ω of Mn can be introduced in more
than one way. On the tangent space an inner product is introduced. It can be com-
bined with a connection at choice. For that reason a tangent vector is often defined
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Figure 2.1: Tangent vector of a path from state ω to state φ

as an equivalence class of smooth paths on the manifold passing through the given
point ω and having the same linearized behavior in a vicinity of ω. Alternatively,
if a chart is available the tangent vectors can be introduced by taking derivatives
w.r.t. the coordinates of the chart.

An obvious chart of the manifold consists of the matrix coefficients of the density
matrix in a chosen basis. The dimension of the manifold is n2 − 1. The −1 is
because of the normalization condition.

Instead of starting from a chart the treatment given below introduces tangent vec-
tors by choosing a particular connection and taking derivatives along a geodesic.
This procedure does not take away the possibility of considering other connec-
tions later on. The choice made here is called the m-connection, with the ’m’ from
’mixture’. The maps λ 7→ (1− λ)ω + λφ are the geodesics of this geometry.

Because ω is faithful there exists for any state φ on A an ǫ > 0 such that φλ =
(1− λ)ω+ λφ belongs to Mn for all λ in the open interval (−ǫ, ǫ). The derivative

d

dλ

∣

∣

∣

∣

λ=0

φλ = φ− ω

is a vector tangent to Mn at the point ω. It belongs to the tangent space TωMn.
The latter is in one-to-one correspondence with the space of all hermitian linear
functionals f on A satisfying f(I) = 0.

A special state on A is the tracial state, denoted ωc. It corresponds with the choice
of density matrix ρ = I/n. The exponential map in the point ωc of Mn maps a
tangent vector ω− ωc onto the state ω. The image of Mn under the inverse map is
an open convex environment of the origin of the Banach space of Hermitian func-
tionals on A vanishing on I. Hence it is a globally defined chart for the manifold
Mn. This observation is discussed further on in Section ??.
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2.3.2 The symmetric logarithmic derivative

Consider three density matrices ρ, σ and τ . In the subsequent section derivatives
of

µ 7→
[

(1− µ)σ1/2ρσ1/2 + µσ1/2τσ1/2)
]1/2

at µ = 0 are needed. The square roots in this expression prohibit a straightforward
calculation. The trick used below involves the concept of the Symmetric Logarith-
mic Derivative (SLD).

Let us start with a general result.

Proposition 3 Let be given density matrices ρ and σ. Assume ρ is positive-definite.
Let the matrix L be defined by

L = 2

∫ +∞

0

dt e−tρσe−tρ. (2.4)

It satisfies

(a) 2σ = ρL+ Lρ;

(b) ρ2 + 2σ = (ρ+ L)2 − L2.

Proof

(a) Note that the integral in (2.4) converges in norm because ρ is positive-definite.
Verify that

ρL+ Lρ = 2

∫ +∞

0

dt e−tρ(ρσ + σρ)e−tρ

= −2

∫ +∞

0

dt
d

dt
e−tρσe−tρ

= −2e−tρσe−tρ
∣

∣

∣

∣

+∞

0
= 2σ.

(b) One has

(ρ+ L)2 − L2 = ρ2 + Lρ+ ρL = ρ2 + 2σ.

�
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The equation for solving 2σ = (ρL+ Lρ) for L is known as the continuous Lya-
punov equation.

By definition the SLD of s 7→ Xs is the solution Ls of

d

ds
Xs =

1

2
(LsXs +XsLs) (2.5)

By the previous proposition the solution Ls exists and is explicitly given by an
expression of the form (2.4). If the matrices Xs at different values of s mutually
commute with each other then the solution of this equation is Ls = d(logXs)/ds.
This explains the name of SLD.

Corollary 1

σ
1/2
λ ρσ

1/2
λ = (ρ+ Lλ + O(λ2))2

with Lλ given by

Lλ =

∫ +∞

0

dt e−tρ
[

σ
1/2
λ ρσ

1/2
λ − ρ2

]

e−tρ. (2.6)

Proof

Write

σ
1/2
λ ρσ

1/2
λ = ρ2 +

[

σ
1/2
λ ρσ

1/2
λ − ρ2

]

.

Apply Proposition 3 to obtain

σ
1/2
λ ρσ

1/2
λ = (ρ+ Lλ)

2 − L2
λ

with Lλ given by (2.6). Note that Lλ is of order λ as λ tends to zero. Hence, one
obtains the result as stated.

�

Corollary 2

σ
1/2
λ τµσ

1/2
λ = (ρ+ Lλ +Mλ,µ + O(λ2) + O(µ2))2.

with

Mλ,µ = µ

∫ +∞

0

dt e−t(ρ+Lλ)σ
1/2
λ (τ − ρ)σ

1/2
λ e−t(ρ+Lλ).
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Proof

By the previous Corollary one has

σ
1/2
λ τµσ

1/2
λ = σ

1/2
λ ρσ

1/2
λ + µσ

1/2
λ (τ − ρ)σ

1/2
λ

= (ρ+ Lλ + O(λ2))2 + µσ
1/2
λ (τ − ρ)σ

1/2
λ .

Application of Proposition 3 now gives

σ
1/2
λ τµσ

1/2
λ = (ρ+ Lλ + O(λ2) +Mλ,µ)

2 −M2
λ,µ.

This implies the stated result.

�

Corollary 3

σ
1/2
λ = ρ1/2 + λ

∫ +∞

0

ds e−s
√
ρ(σ − ρ)e−s

√
ρ + O(λ2).

Proof

Use Proposition 3 to obtain

σλ =
(

ρ1/2
)2

+ λ(σ − ρ)

= (ρ1/2 + L)2 − L2

with L given by

L = λ

∫ +∞

0

ds e−s
√
ρ(σ − ρ)e−s

√
ρ.

This implies the desired result.

�

2.3.3 Riemannian geometry

The Bures distance defines a metric on the manifold Mn of faithful states. What
one needs in the context of Riemannian geometry is an inner product on the tangent
planes. This can be obtained by linearizing the Bures distance. See for instance
Dittman [38]. Here different techniques are used. The goal is to show that the
inner product can be derived starting from Eguchi’s work.
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Following Eguchi [28, 30] an inner product on the tangent space TωMn can be
derived from a divergence function by taking two derivatives. In the present con-
text the divergence is chosen equal to the square of the Bures distance. Eguchi’s
expression becomes

(φ− ω, ψ − ω)ω = − d

dλ

d

dµ
d2(φλ, ψµ)

∣

∣

∣

∣

λ=µ=0

(2.7)

with

φλ = (1− λ)ω + λφ and ψµ = (1− µ)ω + µψ.

Because the distance d(ω, φ) is symmetric in its arguments one has the following
result.

Proposition 4 One has

d2

dλ2
d2(φλ, φµ)

∣

∣

∣

∣

µ=λ

= − d

dλ

d

dµ
d2(φλ, φµ)

∣

∣

∣

∣

λ=µ

. (2.8)

This implies that

(φ− ω, φ− ω)ω =
d2

dλ2
d2(φλ, ω)

∣

∣

∣

∣

λ=0

.

Proof

From d(φλ, φλ) = 0 it follows that

0 =
d

dλ
d2(φλ, φµ)

∣

∣

∣

∣

µ=λ

.

Take another derivative to obtain

0 =
d

dλ

[

d

dλ
d2(φλ, φµ)

∣

∣

∣

∣

µ=λ

]

=
d2

dλ2
d2(φλ, φµ)

∣

∣

∣

∣

µ=λ

+
d

dλ

d

dµ
d2(φµ, φλ)

∣

∣

∣

∣

µ=λ

.

This gives (2.8). The remainder of the proof is straightforward.

�
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Theorem 2 Let ω, φ and ψ be faithful states on the von Neumann algebra of
bounded linear operators on C

n. Let ρ, σ and τ be the corresponding density
matrices. The inner product defined by (2.7) is given by

(φ− ω, ψ − ω)ω =

∫ +∞

0

dt Tr e−tρ(σ − ρ)e−tρ(τ − ρ) (2.9)

The proof is found in the Appendix.

Expression (2.9) is known as Bures’ metric. In the Literature it is often written as

(φ− ω, ψ − ω)ω = 1
2

Tr (σ − ρ)G

with G the solution of

1

2
(ρG+Gρ) = τ − ρ.

2.3.4 Affine coordinates

Let us now introduce a coordinate representation in which all connection coeffi-
cients Γkij of the mixture connection vanish.

The tangent space TωMn consists of all Hermitian functionals χ on B(Cn) satis-
fying χ(I) = 0. Indeed, the tangent space TωMn is spanned by differences φ − ω
with φ any state in Mn. Let ρ and σ be the density matrices of ω, respectively φ.
Then one has

φ(A)− ω(A) = Tr (σ − ρ)A, A ∈ B(Cn).

The difference σ − ρ is a Hermitian matrix with vanishing trace. It belongs to the
space A0

sa of traceless Hermitian matrices. It is easy to show that there is a one-to-
one correspondence between tangent vectors χ in TωMn and matrices X in A0

sa. It
is given by

χ(A) = Tr XA, A ∈ B(Cn).

The space A0
sa is a real Hilbert space for the Hilbert-Schmidt inner product

(X, Y )HS = Tr XY.

Hence one can construct an orthonormal set (Bi)i of vectors in A0
sa. They satisfy

(Bi, Bj)HS = δi,j . A matrix X in A0
sa can then be expanded as

X = (X,Bi)HSB
i.
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Any density matrix ρ of a state ω can be expanded as

ρ =
1

n
I+ ( Tr ρBi)Bi =

1

n
I+ ω(Bi)Bi.

Introduce basis vectors e(m)

i in the tangent bundle by

[e(m)

i ]ω(A) = Tr BiA, A ∈ B(Cn),

independent of ω. The map ω 7→ [e(m)

i ]ω is a constant vector field. The state ω now
satisfies

ω(A) = Tr ρA =
1

n
Tr A + ω(Bi) Tr BiA =

1

n
Tr A+ ω(Bi)[e(m)

i ]ω(A),

A ∈ B(Cn). (2.10)

Introduce coordinates ξ(ω) defined by ξi(ω) = ω(Bi). The expression for a tan-
gent vector φ− ω in TωMn then becomes

φ− ω =
(

ξi(φ)− ξi(ω)
)

[e(m)

i ]ω.

The metric tensor of the Bures metric is given by

gij(ω) = (e(m)

i , e
(m)

j )ω

=

∫ +∞

0

dt Tr e−tρBie
−tρBj (2.11)

with ρ the density matrix of ω. The inner product takes on the form

(φ− ω, ψ − ω)ω = (ξi(φ)− ξi(ω)) gij(ω) (ξ
j(φ)− ξj(ω)) (2.12)

Consider now the path λ 7→ φλ = ω + λ(φ− ω), as before. Then one finds

φ− ω =
d

dλ
φλ = ξ̇i∂iφλ =

[

ξ̇ie(m)

i

]

φλ
,

with ξ̇i = dξi/dλ. Because the l.h.s. does not depend on λ and neither do the
basis functions e(m)

i one obtains ξ̈i = 0. This is a special case of the Euler-Lagrange
equation

ξ̈k + Γkij ξ̇
iξ̇j = 0,

with connection coefficients Γkij identically equal to 0. Hence the path λ 7→ φλ is
a geodesic.
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2.3.5 Special role of the tracial state

The tracial state ωc occupies a special status. Its density matrix ρc is the identity
operator I divided by n. The decomposition (2.10) of the state ω can therefore be
written as

ω = ωc + ξi(ω)[e(m)

i ]ω.

The chart ξ is a global chart for the manifold Mn. Note that ξ(ωc) = 0. This shows
that the chart ξ is centered at the tracial state ωc.

2.4 The case n=2

2.4.1 Introduction

The manifolds Mn with n = 2, 3 have been studied in detail. In the case of 2-by-2
density matrices the geometry is clear. Early references are (Hübner 1992) [31] and
(Jozsa, 1994) [35]. (Dittmann, 1999) [43] showed that for n = 3 the Riemannian
curvature is not constant. A recent work on n = 3 is (Ercolessi, Schiavina 2013)
[62]. The overall impression is that n = 2 is an exception and that it is not easy to
analyse the manifold Mn for n ≥ 3.

2.4.2 The Bloch sphere

The case n = 2 is especially important in Quantum Mechanics. It is known since
long that the vector states on B(C2) can be represented by the points on the unit
sphere of R3, called the Bloch sphere in this context. The interior points with
faithful states. Any state on B(C2) is either a vector state or a faithful state. This
is not anymore the case for n ≥ 3.

A chart which maps any faithful density matrix ρ onto a point in R3 is given by

ρ =
1

2

(

1 + x3 x1 − ix2
x1 + ix2 1− x3

)

with |x| < 1.

It can be expressed in terms of the Pauli matrices σi as

ρ =
1

2
I+ xiσi.



2.4. THE CASE N=2 29

Figure 2.2: The Bloch sphere

The Pauli matrices are defined by

σ3 =

(

1 0
0 −1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

Choose now basis vectors Bi in Hilbert-Schmidt space proportional to the Pauli
matrices

Bi =
1√
2
σi, i = 1, 2, 3.

It is straightforward to verify that (Bi, Bj)HS = δi,j holds. The coordinates ξi(ω) in-
troduced before are then found to equal ξi(ω) = xi/

√
2. This implies that the coor-

dinates xi are affine coordinates as well and that the geodesics of the m-connection
correspond with straight lines through the Bloch sphere.

The calculation of an explicit expression for the metric tensor gi,j(ω) is rather
lengthy. A short discussion follows below.

The eigenvalues of ρ are (1±|x|)/2. Hence, there exists a unitary matrixU = U(ξ)
such that

U∗ρU =
1

2

(

1 + |x| 0
0 1− |x|

)

.

This implies

U∗e−tρU = exp(−t(U∗ρU))
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=

(

exp(−t(1 + |x|)/2) 0
0 exp(−t(1− |x|)/2)

)

= e−t/2
[

cosh
t|x|
2

I− sinh
t|x|
2
σ3

]

.

The expression (2.11) for the metric tensor becomes

gij(ω) =

∫ +∞

0

dt e−t Tr U

[

cosh
t|x|
2

I− sinh
t|x|
2
σ3

]

U∗Bi

×U
[

cosh
t|x|
2

I− sinh
t|x|
2
σ3

]

U∗Bj

=
1

2

[

1 +
1

1− |x|2
]

δij

− 1

2

|x|
1− |x|2 [ Tr Uσ3U

∗BiBj + Tr BiUσ3U
∗Bj ]

+
1

2

|x|2
1− |x|2 Tr Uσ3U

∗BiUσ3U
∗Bj .

2.5 Appendix

Proof of Theorem 2.9 From Corollary 2 one obtains

d2(φλ, ψµ) = 2− 2 Tr [ρ+ Lλ +Mλ,µ] + O(λ2) + O(µ2).

This implies

d

dµ

∣

∣

∣

∣

µ=0

d2(φλ, ψµ) = −2
d

dµ

∣

∣

∣

∣

µ=0

Tr Mλ,µ

= −2

∫ +∞

0

dt Tr e−t(ρ+Lλ)σ
1/2
λ (τ − ρ)σ

1/2
λ e−t(ρ+Lλ) + O(λ2)

= −2

∫ +∞

0

dt Tr σ1/2
λ e−2t(ρ+Lλ)σ

1/2
λ (τ − ρ) + O(λ2)

= − Tr σ1/2
λ (ρ+ Lλ)

−1σ
1/2
λ (τ − ρ).

Lemma 4

σ
1/2
λ (ρ+ Lλ)

−1σ
1/2
λ = I− ρ−1/2 [Lλ − λ(σ − ρ)] ρ−1/2 + o(λ). (2.13)

Proof

Let

Y = σ
1/2
λ (ρ+ Lλ)

−1σ
1/2
λ − I.
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Inversion gives

(I+ Y )−1 = σ
−1/2
λ (ρ+ Lλ)σ

−1/2
λ . (2.14)

This can be written as

ρ+ Lλ = σ
1/2
λ (I+ Y )−1σ

1/2
λ

= σ
1/2
λ (I− Y )σ

1/2
λ + o(λ)

= σλ + σ
1/2
λ Y σ

1/2
λ + o(λ)

= ρ+ λ(σ − ρ) + ρ1/2Y ρ1/2 + o(λ).

Here, it is used several times that Y is of order λ. The above expression can be
written as

Y = ρ−1/2(Lλ − λ(σ − ρ))ρ−1/2.

The latter implies (2.13).

�

Now continue with the proof of the Theorem. With the help of the Lemma one
obtains

d

dµ

∣

∣

∣

∣

µ=0

d2(φλ, ψµ) = Tr ρ−1/2 [Lλ − λ(σ − ρ)] ρ−1/2(τ − ρ) + o(λ).

Minus the derivative of the above expression w.r.t. λ gives the inner product

(φ− ω, ψ − ω)ω = − Tr ρ−1/2

[

d

dλ

∣

∣

∣

∣

λ=0

Lλ

]

ρ−1/2(τ − ρ)

+ Tr ρ−1/2(σ − ρ)ρ−1/2(τ − ρ)

= −
∫ +∞

0

dt Tr ρ−1/2e−tρ
[

d

dλ

∣

∣

∣

∣

λ=0

σ
1/2
λ ρσ

1/2
λ

]

e−tρρ−1/2(τ − ρ)

+ Tr ρ−1/2(σ − ρ)ρ−1/2(τ − ρ).

From Corollary 3 one gets

∫ +∞

0

dt e−tρ
d

dλ

∣

∣

∣

∣

λ=0

σ
1/2
λ ρσ

1/2
λ e−tρ

=

∫ +∞

0

dt e−tρ
∫ +∞

0

ds e−s
√
ρ(σ − ρ)e−s

√
ρ ρ3/2e−tρ

+

∫ +∞

0

dt e−tρρ3/2
∫ +∞

0

ds e−s
√
ρ(σ − ρ)e−s

√
ρe−tρ. (2.15)
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Three successive partial integrations yield

∫ +∞

0

ds e−s
√
ρ(σ − ρ)e−s

√
ρ ρ3/2 = −

∫ +∞

0

ds e−s
√
ρ(σ − ρ)

d

ds
e−s

√
ρ ρ

= −
∫ +∞

0

ds
d

ds

[

e−s
√
ρ(σ − ρ)e−s

√
ρ
]

ρ

+

∫ +∞

0

ds

[

d

ds
e−s

√
ρ

]

(σ − ρ)e−s
√
ρ ρ

= (σ − ρ) ρ

−
∫ +∞

0

ds ρ1/2(σ − ρ)e−s
√
ρ ρ

= (σ − ρ) ρ− ρ1/2(σ − ρ)ρ1/2

+

∫ +∞

0

ds ρ(σ − ρ)e−s
√
ρ ρ1/2

= (σ − ρ) ρ− ρ1/2(σ − ρ)ρ1/2 + ρ(σ − ρ)

−
∫ +∞

0

ds ρ3/2(σ − ρ)e−s
√
ρ.

Hence, (2.15) becomes

∫ +∞

0

dt e−tρ
d

dλ

∣

∣

∣

∣

λ=0

σ
1/2
λ ρσ

1/2
λ e−tρ

=

∫ +∞

0

dt e−tρ
[

(σ − ρ) ρ− ρ1/2(σ − ρ)ρ1/2 + ρ(σ − ρ)

]

e−tρ

= (σ − ρ)−
∫ +∞

0

dt e−tρρ1/2(σ − ρ)ρ1/2e−tρ.

The final result is

(φ− ω, ψ − ω)ω = − Tr ρ−1/2

[

(σ − ρ)−
∫ +∞

0

dt e−tρρ1/2(σ − ρ)ρ1/2e−tρ
]

ρ−1/2(τ − ρ)

+ Tr ρ−1/2(σ − ρ)ρ−1/2(τ − ρ)

=

∫ +∞

0

dt Tr e−tρ(σ − ρ)e−tρ(τ − ρ).



Chapter 3

Exponential arcs

3.1 Introduction

Part of the present and subsequent Chapters is based on work of the author [66,
70, 74].

3.1.1 Motivation

In the previous chapter the chart ω ∈ Mn 7→ ξ(ω) is introduced. It is an affine
coordinate system for the m-connection. It maps Mn onto an open convex subset
C of Rn2−1. The exponential map is only defined on the set C, not on all of Rn2−1.
It takes some work to show that the Euclidean norm ||ξ(ω)|| is bounded above by
the constant n. As a consequence any geodesic λ 7→ (1 − λ)ω + λφ is mapped
onto a straight line λ 7→ ξ(1− λ)ω + λφ of finite length. See the example n = 2
at the end of the previous chapter.

The present chapter introduces a different chart, denoted ω 7→ x(ω). It is shown
that the range of this map is all of Rn2−1. A Riemannian manifold is said to be
geodesically complete if for any tangent plane the exponential map is defined on
all of the tangent plane. In the case of an affine coordinate system the tangent
plane can be identified with the range of the chart. The goal of the present chapter
is to introduce a chart which turns Mn into a geodesically complete manifold. The
corresponding geometry is that of the e-connection.

A metric space is said to be complete if every Cauchy sequence has a limit point be-
longing to the space. The Hopf-Rinow theorem states that a Riemannian manifold
is geodesically complete if and only if as a metric space it is complete.

33
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3.1.2 Useful identities

A proof of the following result is found in the book of Amari-Nagaoka [45], p.
156. It is repeated here.

Proposition 5 For any pair P , Q of positive-definite n-by-n matrices is

P −Q =

∫ 1

0

duQu(logP − logQ)P 1−u. (3.1)

Proof

Let us first prove that

1−QtP−t =

∫ t

0

duQu(logP − logQ)P−u. (3.2)

Expression (3.2) is clearly valid at t = 0. The derivatives w.r.t. t of both l.h.s. and
r.h.s. equal

−Qt(logQ)P−t +QtP−t logP.

Hence, (3.2) is valid at all t,

Take t = 1 in (3.2) and multiply from the right with P to obtain (3.1).

�

Proposition 6 The identity

d

dt

∣

∣

∣

∣

t=0

eH+tA =

∫ 1

0

du euHAe(1−u)H (3.3)

holds for any pair of Hermitian matrices H and A in B(Cn),

Proof

Take P = exp(H + tA) and Q = expH in (3.1) to find

eH+tA − eH = t

∫ 1

0

du euHAe(1−u)H .

Divide by t and take the limit t→ 0 to obtain (3.3).

�

Note that by substitution of u by 1− u one obtains

d

dt

∣

∣

∣

∣

t=0

eH+tA =

∫ 1

0

du e(1−u)HAeuH . (3.4)
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3.1.3 The Kubo transform

The expression in the r.h.s. of 3.3 is known as a Kubo transform.

Definition 2 Given a density matrix ρ in Mn the Kubo transform of a matrix A is
defined by

[A]Kρ =

∫ 1

0

du ρuAρ1−u

Proposition 7 The inverse of the Kubo transform exists and is given by

A =

∫ +∞

0

dt
1

ρ+ t
[A]Kρ

1

ρ+ t
(3.5)

Proof

Choose an orthonormal basis (fi)i which diagonalizes ρ. It satisfies ρfi = λifi
with λi > 0. One calculates

([A]Kρfi, fj) = (Afi, fj)

∫ 1

0

du λui λ
1−u
j

= (Afi, fj)
λi − λj

log λi − log λj

and
∫ +∞

0

dt

(

1

ρ+ t
[A]Kρ

1

ρ+ t
fi, fj

)

= ([A]Kρfi, fj)

∫ +∞

0

dt
1

λi + t

1

λj + t

= ([A]Kρfi, fj)
log λi − log λj

λi − λj

Hence, one has for all i, j

([A]Kρfi, fj) =

∫ +∞

0

dt

(

1

ρ+ t
[A]Kρ

1

ρ+ t
fi, fj

)

.

This implies (3.5).

�

The following properties of the Kubo transform can be derived easily.
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- If A = A∗ then ([A]Kρ)
∗ = [A]Kρ;

- Tr A[B]Kρ = Tr [A]KρB;

- Tr [A]Kρ = Tr ρA.

The latter implies that a matrix A with vanishing expectation is transformed into a
matrix [A]Kρ with vanishing trace.

Proof

One has

([A]Kρ)
∗ =

∫ 1

0

du ρ1−uA∗ ρu

=

∫ 1

0

du ρuA∗ ρ1−u.

This shows the first claim.

One has

Tr [A]KρB =

∫ 1

0

du Tr ρuAρ1−uB.

Replace u by 1− u and use cyclic permutation under the trace to obtain

Tr [A]KρB =

∫ 1

0

du Tr ρ1−uAρuB

=

∫ 1

0

du Tr AρuB ρ1−u

Tr ρA [B]Kρ.

This proves the second claim.

Finally, take B = I and use that [I]Kρ = ρ.

�

Note that the matrix cρ(σ) satisfies Tr ρ cρ(σ) = 0. Its Kubo transform [cρ(σ)]
K
ρ

is traceless. Hence, the corresponding linear functional belongs to the tangent
plane TωMn.
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Figure 3.1: Exponential arc connecting the state φ to the state ω

3.2 Bogoliubov’s metric

3.2.1 Umegaki’s relative entropy

Umegaki’s relative entropy [5, 17, 18] of the density matrix ρ relative to the density
matrix σ is defined by

D(ρ||σ) = Tr ρ(log ρ− log σ). (3.6)

The expression in the r.h.s. is well-defined for ρ, σ in Mn.

In the mathematics literature a relative entropy is called a divergence. One sees
immediately that D(ρ||ρ) = 0. The proof that always D(ρ||σ) ≥ 0 is based on
Klein’s inequality. The proof that D(ρ||σ) = 0 implies that ρ = σ follows from
the inequality

D(ρ||σ) ≥ 1

2
Tr (ρ− σ)2.

Proofs are given in the Appendix.

In what follows the divergence of a pair of states φ, ω is used. It is given by the
divergence of the corresponding density matrices σ, ρ, i.e. D(ω||φ) = D(ρ||σ).

3.2.2 Exponential arcs

Definition 3 An exponential arc connecting the state φ to the state ω ∈ Mn is a
map t ∈ [0, 1] 7→ φt with the property that the density matrices σt of the states φt
are given by

σt = exp(log ρ+ t(log σ − log ρ)− α(φt))

with

α(φt) = log Tr exp(log ρ+ t(log σ − log ρ)).

Note that σ0 = ρ, σ1 = σ, α(0) = α(1) = 0.



38 CHAPTER 3. EXPONENTIAL ARCS

The vector tangent to the path t 7→ φt at φ0 = ω is the functional [χφ]ω given by

[χφ]ω(A) =
d

dt
φt(A)

∣

∣

∣

∣

t=0

= Tr

[

d

dt
σt

]

t=0

A.

Use the identity (3.3) to calculate

d

dt

∣

∣

∣

∣

t=0

σt =

∫ 1

0

du ρu
[

log σ − log ρ− d

dt
α(φt)

∣

∣

∣

∣

t=0

]

ρ1−u.

As a result the tangent vector is given by

[χφ]ω(A) =

[

log σ − log ρ− d

dt
α(φt)

∣

∣

∣

∣

t=0

]K

ρ

A, A ∈ A.

(3.7)

Note that

d

dt
α(φt)

∣

∣

∣

∣

t=0

= Tr

∫ 1

0

du ρu[log σ − log ρ]ρ1−u

= − Tr ρ(log ρ− log σ)
= −D(ρ||σ),

with D(ρ||σ) Umegaki’s relative entropy. Hence, one can write

[χφ]ω(A) = Tr cρ(σ)

(
∫ 1

0

du ρ1−uAρu
)

= Tr [cρ(σ)]
K

ρA, A ∈ B(Cn),(3.8)

with the operator cρ(σ) defined by

cρ(σ) = log σ − log ρ+D(ρ||σ).

3.2.3 Geodesic completeness

Proposition 8 For any ω in Mn the map φ ∈ Mn 7→ [χφ]ω is one-to-one.

Proof

Assume φt and ψt connect φ respectively ψ to ω and assume that [χφ]ω = [χψ]ω.
Let ρ, σ, τ be the density matrices of ω, φ, ψ. One has for all A in B(Cn)

Tr [cρ(σ)]
K
ρ A = [χφ]ω(A)
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= [χψ]ω(A)
= Tr [cρ(τ)]

K
ρ A.

This implies that [cρ(σ)]Kρ = [cρ(τ)]
K
ρ . Because the Kubo transform is invertible

it follows that

log σ − log ρ+D(ρ||σ) = cρ(σ)
= cρ(τ)
= log τ − log ρ+D(ρ||τ).

Multiply with ρ and take the trace to find that D(ρ||σ) = D(ρ||τ) and hence that
log σ = log τ . The latter implies that σ = τ and that φ = ψ.

�

Theorem 3 Fix ω in Mn. One has

(a) For any Hermitian linear functional χ on A satisfying χ(I) = 0 there exists
a state φ on A such that χ = [χφ]ω.

(b) The exponential map [χφ]ω 7→ ωφ is well-defined;

(c) (geodesic completeness) The exponential map is a one-to-one map from the
tangent plane TωMn onto the manifold Mn.

Proof

(a) By Riesz’ theorem there exists a self-adjoint element X in A such that

χ(A) = (A,X)HS = Tr XA, A ∈ A.

Let Y be the inverse Kubo transform of X . Let σ be defined by

σ =
exp(log ρ+ Y )

Tr exp(log ρ+ Y )
.

Then σ is a density matrix. Let φ be the state defined by σ. It satisfies

cρ(σ) = log σ − log ρ+D(ρ||σ)
= Y − log Tr exp(log ρ+ Y ) +D(ρ||σ).

The vector at ω tangent to the exponential arc connecting φ to ω is given by

[χφ]ω(A) = Tr cρ(σ)

(
∫ 1

0

du ρ1−uAρu
)
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= Tr [Y − log Tr exp(log ρ+ Y ) +D(ρ||σ)]
(
∫ 1

0

du ρ1−uAρu
)

= Tr XA+ [log Tr exp(log ρ+ Y )−D(ρ||σ)]ω(A)
= χ(A).

The term proportional to ω(A) drops out because by assumption χ(I) = 0 while
also [χφ]ω(I) = 0.

(b,c) From part (a) of the theorem it follows that the range of the map φ 7→ [χφ]ω
is all of TρMn. The previous proposition shows that the map is one-to-one. Hence
its inverse, which is the exponential map, is well-defined on all of TρMn and has
Mn as its range.

�

3.2.4 Bogoliubov’s inner product

Introduce an inner product for the tangent space TωMn defined by

(χφ, χψ)ω = − d

ds

d

dt
D(φs||ψt)

∣

∣

∣

∣

s=t=0

.

As before φs and ψt are the exponential arcs connecting φ, ψ to ω.

One derivative gives

d

dt
D(φs||ψt)

∣

∣

∣

∣

t=0

= − d

dt
Tr σs log τt

∣

∣

∣

∣

t=0

= − d

dt
Tr σs [log ρ+ t(log τ − log ρ)− α(ψt)]

∣

∣

∣

∣

t=0

= − Tr σs [log τ − log ρ] +
d

dt
α(ψt)

∣

∣

∣

∣

t=0

(3.9)

The latter term does not depend on s. Hence it does not contribute when taking
the derivative w.r.t. s.

The second derivative gives

(χφ, χψ)ω =
d

ds
Tr σs [log τ − log ρ]

∣

∣

∣

∣

s=0

=

∫ 1

0

du Tr σus

[

log σ − log ρ− d

ds
α(φs)

]

σ(1−u)
s [log τ − log ρ]

∣

∣

∣

∣

s=0

=

∫ 1

0

du Tr ρu [log σ − log ρ] ρ1−u [log τ − log ρ]
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− d

ds
α(φs)

∣

∣

∣

∣

s=0

Tr ρ [log τ − log ρ] .

Take s = 0 in (3.9) to find

d

dt
α(ψt)

∣

∣

∣

∣

t=0

= Tr ρ [log τ − log ρ]

= −D(ρ||τ). (3.10)

One obtains

(χφ, χψ)ω =

∫ 1

0

du Tr ρu [A− Tr ρA] ρ1−u [B − Tr ρB]

=

∫ 1

0

du Tr ρ1−u [A− Tr ρA] ρu [B − Tr ρB] (3.11)

with

A = log σ − log ρ and B = log τ − log ρ.

This is the Bogoliubov inner product adapted to the present notations. See [16, 32,
66].

Proposition 9 The inner product defined by (3.11) is symmetric, positive and non-
degenerate.

Proof

The symmetry (χφ, χψ)ω = (χψ, χφ)ω follows by cyclic permutation under the
trace and substitution of u by 1− u.

The positivity of (χφ, χφ)ω follows from

(χφ, χφ)ω =

∫ 1

0

du Tr
(

ρ(1−u)/2cρ(σ)ρ
u/2

)† (
ρ(1−u)/2cρ(σ)ρ

u/2
)

.

Finally, non-degeneracy is shown as follows. The assumption that (χφ, χφ)ω =
0 implies that ρ(1−u)/2cρ(σ)ρu/2 = 0 for all u in [0, 1]. This is only possible if
cρ(σ) = 0. The latter implies that σ = ρ and hence that φ = ω.

�

3.3 Coordinate representation

3.3.1 Affine coordinates

One can write for any state φ with density matrix σ

log σ = xi(φ)Bi + Tr log σ,
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with (Bi)i be the basis introduced in Section 2.3.4. The basis vectors span the
subspace of HHS consisting of the hermitian matrices with vanishing trace. Hence
log σ − Tr log σ can be expanded in this basis and one has

xi(φ) = (log σ,Bi)HS.

The map φ 7→ x(φ) ∈ Rn2−1 is a global chart for the manifold Mn.

From the definition (3.7) of the tangent functional [χφ]ω ∈ TωMn it follows that

[χφ]ω(A) = [xi(φ)− xi(ω)] [e(e)

i ]ω(A), A ∈ A. (3.12)

with

[e(e)

i ]ω(A) = Tr [Bi − Tr ρBi]
K

ρA, A ∈ A. (3.13)

The functionals [e(e)

i ]ω are basis vectors for the tangent plane TωMn. Note that the
basis vectors depend on the state ω.

For further use, note also that the density matrix σ of the state φ can be written as

σ =
ex

i(φ)Bi

Tr exi(φ)Bi

and that the basis vectors satisfy the symmetry relation

[e(e)

i ]ω(Bj) =

∫ 1

0

du Tr ρu [Bi − ω(Bi)] ρ
1−u [Bj − ω(Bj)]

=

∫ 1

0

du Tr ρ1−u [Bj − ω(Bj)] ρ
u [Bj − ω(Bj)]

= [e(e)

j ]ω(Bi).

The following result shows that the xi(φ)−xi(ω) are coordinates centered at the
state ω.

Proposition 10 For any tangent vector χφ is

[χφ]ω(A) = [xi(φ)− xi(ω)] [e(e)

i ]ω(A) (3.14)

Proof

From

cρ(σ) = log σ − log ρ+D(ρ||σ)
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= [xi(φ)− xi(ω)]Bi + Tr log σ − Tr log ρ+D(ρ||σ)
= [xi(φ)− xi(ω)] [Bi − Tr ρBi] (3.15)

one obtains for all A in B(Cn)

Tr [cρ(σ)]
K

ρA = [xi(φ)− xi(ω)] Tr [Bi − Tr ρBi]
K

ρA

= [xi(φ)− xi(ω)] [e(e)

i ]ω(A) (3.16)

�

3.3.2 The metric tensor

The metric tensor of the Bogoliubov metric is given by

gij(ω) = (e(e)

i , e
(e)

j )ω

From the previous proposition it follows that the inner product (3.11) can be written
as

(χφ, χψ)ω = [xi(φ)− xi(ω)] gij(ω)[x
j(φ)− xj(ω)].

The basis vectors e(e)

i are tangent vectors [e(e)

i ]ω = [χφi ]ω labeled with states φi
whose density matrices σi depend on ω and are given by

σi =
elog ρ+Bi

Tr elog ρ+Bi
, (3.17)

with ρ the density matrix of ω. The coordinates of these states φi are given by

xi(φj) = (log σj , Bi)HS

= xi(ω) + gij.

This implies that χφj = [e(e)

j ]ω. Use that cρ(σj) = Bj − Tr ρBj and (3.11) to
calculate the metric tensor

gij(ω) = (e(e)

i , e
(e)

j )ω
= (χφi, χφj )

=

∫ 1

0

du Tr ρ1−u [Bi − ω(Bi)] ρ
u [Bj − ω(Bj)]

= [e(e)

i ]ω(Bj − ω(Bj))
= [e(e)

j ]ω(Bi − ω(Bi)). (3.18)
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3.4 An alternative approach

3.4.1 The GNS construction

Every state ω on a C∗-algebra A can be represented as a C∗-algebra of bounded
operators on a Hilbert space H in such a way that the state ω becomes a vector
state. This means that there exists a normalized vector Ω in H such that ω(A) =
(AΩ,Ω) for all A in A. The vector Ω may be assumed to be cyclic for A, which
means that AΩ is dense in H . This is the essence of the Gelfand-Naimark-Segal
(GNS) construction.. The GNS-representation is unique up to unitary equivalence.
See one of the references [8, 14, 22] for mathematical details.

The GNS-construction is general. The construction is rather abstract. In the present
case the algebra A is the finite-dimensional algebra B(Cn) of n-by-n matrices with
complex entries. In this case the construction can be made more concrete using
the Hilbert space Cn ⊗ Cn in the same way as in Chapter 2.

The construction starts like in Lemma 1 of Chapter 2 by selecting an orthonormal
basis (fi)i diagonalizing the density matrix ρ of the given state ω in Mn. Let
ρfi = pifi and choose Ω =

∑

i

√
pi fi ⊗ fi. Then one has

(A⊗ IΩ,Ω) =
∑

i,j

√
pipj(A⊗ I fi ⊗ fi, fj ⊗ fj)

=
∑

i

pi(Afi, fi) = Tr ρA = ω(A) (3.19)

This shows that the state ω becomes a vector state.

Let us now show that the vector Ω is cyclic for B(Cn). This then leads to the
conclusion that the representation

Lemma 5 The set {A⊗IΩ : A ∈ A} is equal to the Hilbert space H = Cn⊗Cn.

Note thatthe definition of the tensor product Cn ⊗ Cn is as in Chapter 2, linear in
the former argument and anti-linear in the latter.

Proof

Let be given an arbitary Ψ in H . It can be expanded as

Ψ =
∑

k,i

λk,ifk ⊗ fi.

Let us try to construct a matrix A such that A⊗ IΩ = Ψ.
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One calculates

A⊗ I

∑

i

√
pifi ⊗ fi =

∑

k,i

λk,ifk ⊗ fi.

This simplifies to

√
piAfi =

∑

k

λk,ifk.

The choice Ak,i = λk,j/
√
pi solves the latter condition.

�

3.4.2 Tomita-Takesaki theory

The Tomita-Takesaki theory is a general theory about the duality between a von
Neumann algebra A and its commutant A′. The setting of the theory is that of
σ-finite von Neumann algebras, which is a non-commuttaive generalization of the
notion of measure spaces. See the introduction of Section 2.5 of [22] for a discus-
sion of this point.

In the present case of the algebra A = B(Cn) and any faithful state ω ∈ Mn the
Tomita-Takesaki theory can be developed in a simplified manner.

Consider the GNS-representation as constructed in the previous section. Define
an anti-linear operator S by S(A⊗ IΩ) = A∗ ⊗ IΩ for all A in B(Cn). It is well
defined because (A⊗ IΩ) = 0 implies A = 0. Indeed, one has

A⊗ IΩ =
∑

i

√
piAfi ⊗ fi.

Because
√
pi 6= 0 and because the fi form an orthonormal basis this expression

can only vanish if Afi = 0 vanishes for all i. The latter implies A = 0.

The adjoint S∗ of the operator S is denoted F . The use of ’S’ and ’F’ for these
operators is tradition. Note that, because of the anti-linearity one has (Sx, y) =
(Fy, x) for all x, y in Cn. The action of the operator F is given by the following
result.

Proposition 11 F (I⊗ AΩ) = I⊗A∗ Ω

Proof

Calculate

(F (I⊗ AΩ), B ⊗ IΩ) = (S(B ⊗ IΩ), I⊗ AΩ)
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= (B∗ ⊗ IΩ, I⊗AΩ)
= (B∗ ⊗A∗Ω, Ω)
= (I⊗A∗ Ω, B ⊗ IΩ) .

Because Ω is cyclic for the representation any vector in Cn ⊗ Cn is of the form
B ⊗ IΩ. Hence, it follows that F (I⊗AΩ) = I⊗A∗Ω.

�

Definition 4 The modular operator is defined by ∆ = FS = S∗S. The modular
conjugation operator J is defined by the polar decomposition S = J∆1/2 of the
operator S. It is given by J = S∆−1/2.

Note that J , like S, is an anti-linear operator.

Proposition 12 In the present context the modular operator is given by
∆ = ρ⊗ ρ−1.

Proof

First calculate for any A and B in B(Cn)

((ρ⊗ ρ−1)A⊗ IΩ, B ⊗ IΩ) = (B∗ρA⊗ ρ−1Ω,Ω)

=
∑

i

p
1/2
i (B∗ρA⊗ ρ−1 fi ⊗ fi,Ω)

=
∑

i

p
−1/2
i ((B∗ρA fi)⊗ fi,Ω)

=
∑

i

(B∗ρA fi, fi)

= Tr ρAB∗ = ω(AB∗). (3.20)

On the other hand is

(∆A⊗ IΩ, B ⊗ IΩ) = (S∗S A⊗ IΩ, B ⊗ IΩ)
= (B∗ ⊗ IΩ, A∗ ⊗ IΩ)

=
∑

i

pi (AB
∗fi, fi)

= Tr ρAB∗ = ω(AB∗). (3.21)

Use the previous result to obtain

(∆A⊗ IΩ, B ⊗ IΩ) = ((ρ⊗ ρ−1)A⊗ IΩ, B ⊗ IΩ).

Because Ω is cyclic for the representation it follows that ∆ = ρ⊗ ρ−1.

�
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Proposition 13 The modular conjugation operator J satisfies J = J∗,
∆1/2J = J∆−1/2 and J2 = 1.

Proof

It is clear that S2 = I. This implies that S is invertible and that S−1 = S. From
the polar decomposition S = J∆1/2 one obtains

J∆1/2 = S = S−1 = ∆−1/2J∗.

Multiply from the left with J to obtain

J2∆1/2 = J∆−1/2J∗.

The r.h.s. is a positive operator. The l.h.s. is a polar decomposition because J2 is
an isometry. From the uniqueness of the polar decomposition it then follows that
J2 = I.

From ∆1/2 = J∆−1/2J∗, by multiplication with J from the right one obtains
∆1/2J = J∆−1/2.

Finally, J∗J = I and J2 = I imply that J = J−1 and J∗ = J−1 = J

�

Proposition 14 SΩ = ∆Ω = JΩ = Ω

Proof

SΩ = Ω follows from the definition of S.

Use the explicit forms of ∆ and Ω to obtain

∆Ω = ρ⊗ ρ−1
∑

i

√
pi fi ⊗ fi

=
∑

i

√
pi (ρ, fi)⊗ (ρ−1fi)

= Ω.

Finally, note that JΩ = S∆−1Ω = Ω follows from the two other results.

�

The following result shows that the isometry J maps the algebra B(Cn) ⊗ I onto
its commutant I⊗ B(Cn).
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Theorem 4 For any A in B(Cn)⊗ I there exists X in B(Cn)⊗ I such that J(A⊗
I)J = I⊗X .

Proof

For any A,B in B(Cn) is

J(A⊗ I)J(B ⊗ I)Ω = J(A⊗ I)JS(B∗ ⊗ I)Ω
= J(A⊗ I)(ρ1/2 ⊗ ρ−1/2)(B∗ ⊗ I)Ω
= J(Aρ1/2B∗ ⊗ ρ−1/2)Ω
= J(Aρ1/2B∗ρ−1/2 ⊗ I)Ω
= JS(ρ−1/2Bρ1/2A∗ ⊗ I)Ω
= (Bρ1/2A∗ ⊗ ρ−1/2)Ω
= (B ⊗ I) (ρ1/2A∗ ⊗ ρ−1/2)Ω. (3.22)

In the case B = I this gives

J(A⊗ I)JΩ = (ρ1/2A∗ ⊗ ρ−1/2)Ω.

Hence, (3.22) becomes

J(A⊗ I)J(B ⊗ I)Ω = (B ⊗ I) J(A⊗ I)JΩ.

Take now an additional C in B(Cn) to obtain

J(A⊗ I)J(BC ⊗ I)Ω = (BC ⊗ I) J(A⊗ I)JΩ
= (B ⊗ I) J(A⊗ I)J (C ⊗ I)Ω.

Because Ω is cyclic for the representation it follows that J(A⊗ I)JB = B J(A⊗
I)J for all B. This shows that J(A⊗ I)J belongs to the commutant of B(Cn)⊗ I.
Hence, it is of the form I⊗X .

�

3.4.3 Generalized Radon-Nikodym derivatives

The non-commutative generalization of the Radon-Nikodym derivative is non-
unique. Araki [15] introduced a family of Radon-Nikodym derivatives, a single
member of which is presented here.

The operator X in the following Proposition can be considered to be a Radon-
Nikodym derivative of the state φ ∈ Mn w.r.t. the given state ω.
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Theorem 5 For each state φ in Mn there exists a unique operator X in B(Cn)
such that

φ(A) = (A⊗XΩ,Ω), A ∈ B(Cn).

The operator satisfies X > 0.

Note that X = I corresponds with φ = ω.

Proof

Calculate

S(ρ−1σ ⊗ I)S = J∆1/2(ρ−1σ ⊗ I)∆−1/2J
= J(ρ−1/2σρ−1/2 ⊗ I)J

By Theorem 5 there existsX such that

S(ρ−1σ ⊗ I) = I⊗X∗.

Let us now verify that this operator X has the required properties.

Calculate

(A⊗XΩ,Ω) = (A⊗ IΩ, I⊗X∗Ω)
= (A⊗ IΩ, S(ρ−1σ ⊗ I)SΩ)
= (A⊗ IΩ, σρ−1 ⊗ IΩ)
= (ρ−1σA⊗ IΩ,Ω)
= ω(ρ−1σA)
= Tr ρ(ρ−1σA) = φ(A). (3.23)

This verifies that X is a Radon-Nikodym derivative of φ w.r.t. ω.

Uniqueness Assume bothX and Y are Radon-Nikodym derivatives of φw.r.t.ω.
Then one has for all A that (A ⊗ IΩ, I ⊗ (X − Y )Ω) = 0. Because Ω is cyclic
for the representation it follows that I ⊗ (X − Y )Ω) = 0. The latter implies that
I⊗ (X − Y )Ω = 0.

Now I⊗ (X − Y ) = 0 follows because for all A one has

0 = [A⊗ I] [I⊗ (X − Y )Ω] = [I⊗ (X − Y )] [A⊗ IΩ]

and Ω is cyclic for the representation.

Self-adjointness: φ(A) = φ(A∗) = (Ω, A∗ ⊗XΩ)

⇒ φ(A) = (A⊗X∗Ω,Ω) plus uniqueness ⇒ X = X∗
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Positivity: 0 ≤ φ(A∗A) = ([I⊗X ] [A⊗ I]Ω, [A⊗ I]Ω)

Strict Positivity: Assume I⊗X Ψ = 0

Then ∃B such that Ψ = B ⊗ IΩ

φ(B∗B) = (B∗B ⊗X Ω,Ω) = (I⊗XΨ,Ψ) = 0

φ is faithful ⇒ B = 0 ⇒ Ψ = 0

�

The above theorem is the basis for giving an alternative definition of exponential
arcs. Given two states ω and φ an exponential arc t 7→ φt connecting φ to ω is
defined by

φt(A) =
(A⊗X tΩ,Ω)

(I⊗X tΩ,Ω)
, A ∈ B(Mn).

The tangent vector to this arc at t = 0 is given by

d

dt

∣

∣

∣

∣

t=0

φt(A) = (A⊗ [logX − β ′(0)]Ω,Ω)

with normalization given by β ′(0) = (I⊗ logX Ω,Ω).

The following example shows that the geometry in which these exponential arcs
are geodesics is really different from the one introduced in the first part of this
chapter.

3.4.4 Example

Use again the Pauli matrices introduced in Section 2.4.2. Let

ρ =
1

2
(I+ ǫσ3) and σ =

1

2
(I+ δσ1).

Verify the following

ω(σ3) = ǫ, φ(σ1) = δ, ω(σ1) = ω(σ2) = φ(σ2) = φ(σ3) = 0.

After some calculation one finds that

X =
1

1− ǫ2

(

1− ǫσ3 + δ
√
1− ǫ2 σ1

)

.
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The tangent vector evaluated for the observable σ1 is given by

d

dt

∣

∣

∣

∣

t=0

φt(σ1) = (σ1 ⊗ [logX − β ′(0)]Ω,Ω) = δ(1− ǫ2)
x

tanhx
(3.24)

with tanh2 x = ǫ2 + (1− ǫ2)δ2. Compare this result with

[χφ]ω)(σ1) = Tr cρ(σ)[σ1]
K
ρ = ζ Tr cρ(σ)σ1

with

ζ =
ǫ

log(1 + ǫ)− log(1− ǫ)
.

Here, [σ1]Kρ = ζσ1 is being used.

Recall that cρ(σ) = log σ − log ρ + D(ρ||σ). This gives [χφ]ω(σ1) = 2ζv with
tanh v = δ, because Tr cρ(σ)σ1 = Tr σ1 log σ1 = 2v.

In general is 2ζv 6= δ(1− ǫ2)x/tanhx. Hence one reaches the conclusion that the
definition of an exponential family gives different results for the two definitions of
exponential arcs.

3.5 Appendix

Klein’s inequality See [12], Section 2.5.2, or [23], Section 2.1.7.. The version
below is taken from [59], Section 11.7.

Lemma 6 Let A, B and C be self-adjoint operators with discrete spectrum. As-
sume that C ≥ 0 and BC = CB. Let f(x) be a convex function. Then one
has

Tr C[f(A)− f(B)− (A− B)f ′(B)] ≥ 0. (3.25)

Proof

Let (φn)n be an orthonormal basis in which A is diagonal. Let (ψm)m be an or-
thonormal basis in whichB and C are simultaneously diagonal. LetAφn = anφn,
Bψm = bmψm, and Cψm = cmψm. Denote λnm = 〈φm|ψn〉. Then the convexity
of f(x) implies that

〈φm|C(f(A)− f(B)− (A−B)f ′(B))|φm〉
=

∑

n

cn|λmn|2[f(am)− f(bn)− (am − bn)f
′(bn)]
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≥ 0. (3.26)

To see the inequality, use that a tangent line to a convex function always lies below
the function.

Klein’s inequality now follows by summing over m.

�

Apply the inequality with f(x) = x log x, x > 0, and C = 1, A = ρ and B = σ.
This gives

D(ρ||σ) = Tr ρ(log ρ− log σ) ≥ 0.

Alternatively, choose f(x) = − log x, A = σ and B = ρ.

The inequality can be improved.

Lemma 7 Let f(x) = x log x. One has

f(x)− f(y)− (x− y)f ′(y) ≥ 1

2
(x− y)2 if 0 < x ≤ 1 and 0 < y ≤ 1.

Proof

Let

gy(x) = f(x)− f(y)− (x− y)f ′(y)− 1

2
(x− y)2.

One has

gy(x) = x(log x− log y) + x− y − 1

2
(x− y)2,

g′y(x) = log x− log y + y − x,

g′′y(x) =
1− x

x
.

From g′′y(x) ≥ 0 it follows that the function gy is convex. From gy(y) = g′y(y) = 0
it follows that gy(x) ≥ 0.

�

The eigenvalues of density matrices ρ and σ lie in the interval (0, 1]. The result is
then

D(ρ||σ) = Tr ρ(log ρ− log σ) ≥ 1

2
Tr (ρ− σ)2.

Klein’s inequality can be generalized. See Theorem 11.10 of Petz [57].
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Proof of the identity (3.3) The following argument is taken from [45], p. 156.

Positive-definite matrices P and Q satisfy the identity

1−QvP−v =

∫ v

0

duQu(logP − logQ)P−u. (3.27)

Indeed, the identity is trivially satisfied for v = 0 and the derivative of the l.h.s.
equals

= −(logQ)QvP−1 + QvP−1 logP = Qv[− logQ + logP ]P−1.

This is the integrand of the r.h.s. of (3.27) evaluated at u = v.

Next, multiply (3.27) with P v from the right to obtain

P v −Qv =

∫ v

0

duQu(logP − logQ)P v−u.

Take v = 1, P = exp(H + tA) and Q = exp(H). This gives

exp(H + tA)− exp(H) = t

∫ 1

0

du euH Ae(1−u)(H+tA).

Divide by t and take the limit t = 0 to obtain (3.3).
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Chapter 4

The dually flat geometry

The present chapter continues with the study of the manifold Mn of faithful states
on the von Neumann algebra B(Cn). The manifold is equipped with the Bogoli-
ubov metric.

4.1 A flat geometry

4.1.1 Parallel transport

For a full description of the geometry of the manifoldMn one still needs to specify
a connection. The choice is not unique. The intention is to find a connection the
geodesics of which are the exponential arcs defined in Section 3.2.2.

A connection determines how to transport tangent vectors along a smooth curve.
Conversely, given transport mappings

Π(ω1 7→ ω2) : Tω1
Mn 7→ Tω2

Mn

Figure 4.1: Parallel transport Π from Tω1
Mn to Tω2

Mn
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it is possible to reconstruct the connection [4]. It is the latter approach which is
followed here.

4.1.2 Dual geometries

Every connection ∇ has a dual connection ∇∗ w.r.t. the metric of the manifold.
With the parallel transport Π corresponds a dual parallel transportΠ∗ The defining
relation is

(

Π(ω1 7→ ω2)V,Π
∗(ω1 7→ ω2)W

)

ω2

=

(

V,W

)

ω1

.

In this expression V and W are vector fields.

Take for instance constant vector fields V = χψ and W = χφ. Then

[χφ]ω(A) = Tr [cρ(σ)]
K

ρA
[χψ]ω(A) = Tr [cρ(τ)]

K

ρA
(V,W )ω = Tr [cρ(τ)]

K

ρ cρ(σ) (4.1)

Then the quantity

(V,W )ω = Tr [cρ(τ)]
K

ρ cρ(σ) (4.2)

must remain constant when one vector is transported using Π and the other using
Π∗.

A known property of the Levi-Civita connection, also called the metric connection,
is that it is the only connection which preserves the metric: length of tangent vec-
tors and angles between them are conserved under parallel transport. This means
Π∗ = Π. For all other connections is Π∗ 6= Π.

The m-connection is the connection in which convex combinations of states are
geodesics

t 7→ (1− t)ω + tφ, t ∈ [0, 1], ω, φ ∈ Mn

The e-connection is the connection in which any exponential arc t 7→ φt connecting
a state φ to a state ω, φ, ω ∈ Mn, is a geodesic.

In the next Section it is shown that the e-connection is the dual of the m-connection
w.r.t. the Bogoliubov metric.
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Figure 4.2: Example of parallel transport with Π 6= Id

4.1.3 Theorem

First consider parallel transport of the m-connection.

Proposition 15 The parallel transport map of the m-connection is the identity map
Π = Id.

Proof

A smooth path γ is a geodesic when the vector field γ̇ is invariant under parallel
transport. This is

Π(γs 7→ γt)[γ̇]γs = [γ̇]γt .

Consider the path γ given by γt = (1−t)ω+tφ, i.e. a geodesic of the m-connection.
Its derivative is the vector field γ̇ = φ − ω. It is independent of t. Hence, it is a
geodesic for the parallel transport Π = Id.

�

Theorem 6 Consider the manifold Mn of faithful states on the von Neumann al-
gebra B(Cn). Parallel transport of the e-connection is the dual Π∗ of the parallel
transport Π = Id provided that the manifold is equipped with the Bogoliubov
metric.

Proof

Consider the exponential arc t 7→ φt connecting a state φ to the state ω. Its density
matrix equals

σt& = exp(log ρ+ t(log σ − log ρ)− α(t)). (4.3)

Take the derivative to find

φ̇t(A) =
d

dt
φt(A)

=

∫ 1

0

du Tr σut [log σ − log ρ− Tr σt(log σ − log ρ)]σ1−u
t A

= Tr [log σ − log ρ− Tr σt(log σ − log ρ)]Kσt A (4.4)
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In order to show that the exponential arc is a geodesic for the dual connection one
should prove that Π∗(φs 7→ φt) φ̇s = φ̇t. To do so the following result is needed.

Proposition 16 The dual parallel transport map Π∗(ω1 7→ ω2) maps χ ∈ Tω1
Mn

onto ξ ∈ Tω2
Mn with χ(A) = Tr [Y ]Kρ1 A and ξ(A) = Tr [X ]Kρ2A related by

X = Y − Tr ρ2Y .

Proof

Take ζ of the form ζ(A) = Tr V Awith V = V ∗ and Tr V = 0. Apply the inverse
Kubo transform: to find

χ(A) = Tr [Y ]Kρ1A and ξ(A) = Tr [X ]Kρ2A.

Because Π is the identity map the defining relation for Π∗ simplifies to

(ζ, ξ)ω2
= (ζ,Π∗(ω1 7→ ω2)χ)ω2

= (ζ, χ)ω1
.

From ζ(A) = Tr V A and ξ(A) = Tr [X ]Kρ2A it follows that (ζ, ξ)ω2
= TrV X .

Similarly is (ζ, ξ)ω2
= TrV X . Hence, the equality (ζ, ξ)ω2

= (ζ, χ)ω1
implies

that for all V one has Tr V X = Tr V Y . Because V is arbitrary but traceless this
implies thatX−Y is a multiple of the identity. The ω2-expectation ofX vanishes.
Hence one obtains X = Y − Tr ρ2Y .

�

Continuation of the proof of the theorem Apply the Proposition with

ω1 = φs, χ = φ̇s and Y = log σ − log ρ− Tr σs(log σ − log ρ),
ω2 = φt, ξ = φ̇t and X = log σ − log ρ− Tr σt(log σ − log ρ).

This gives Π∗(φs 7→ φt) φ̇s = φ̇t because X = Y − Tr σtY is satisfied.

�

4.1.4 Coordinate representation

Let (ei)i be the basis vectors of the tangent bundle, as given by (3.13). The fol-
lowing proposition shows that they are invariant under the dual parallel transport
Π∗.

Proposition 17 One has Π∗(ω1 7→ ω2)[ei]ω1
= [ei]ω2

.
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Proof

Apply the previous proposition with Y = Bi − Tr ρ1Bi. This yields X = Bi −
Tr ρ2Bi and hence

ξ(A) = Tr [X ]Kρ2 A = [ei]ω2
(A).

�

4.1.5 Covariant derivatives

The covariant derivative of a vector field V along a smooth curve γ is given by [4]

[∇∗
γ̇V ]γt =

d

ds

∣

∣

∣

∣

s=0

Π∗(γt+s 7→ γt) V (γt+s).

Apply this expression to the basis vectors ei

[∇∗
γ̇ei]γt =

d

ds

∣

∣

∣

∣

s=0

Π∗(γt+s 7→ γt) [ei]γt+s

=
d

ds

∣

∣

∣

∣

s=0

[ei]γt

= 0. (4.5)

By definition the connection coefficients Γ∗k
ij are given by

∇∗
ei
ej = Γ∗k

ijek.

One concludes that they vanish.

4.1.6 Flatness

A connection∇ is flat if there exists an affine coordinate system, this is a coordinate
system in which all connection coefficients Γkij vanish. Hence, the conclusion of
the previous section is that xi(φ) − xi(ω) are affine coordinates. Hence, the e-
connection is flat.

This result is expected on the basis of the following result due to Chentsov: If a
connection is flat then its dual is flat as well. For a proof see [45], Theorem 3.3 on
p. 53.
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4.2 The Legendre structure

4.2.1 A Hessian geometry

The manifoldMn equipped with the Bogoliubov metric and the e-connection has a
Hessian geometry. There exist affine coordinates xi(ω) and a potential Φ(ω) such
that the metric tensor gij(ω) is the Hessian of this potential Φ(ω). This is proved
in the following Theorem.

Theorem 7 Let (Bi)i be the orthonormal basis in Hilbert-Schmidt space, xi(ω)
be corresponding coordinates and gij(ω) the metric tensor all defined in Section
3.3.2. There exists a potential Φ(x) such that

i) ∂iΦ(x(ω)) = ω(Bi)

ii) ∂i∂j Φ(x(ω)) = gi,j(ω)

Proof

Let

Φ(x) = log Tr exp(xiBi), x ∈ R
n2−1.

Take a derivative w.r.t. xi to find

∂iΦ(x) =
1

Tr exp(xiBi)
∂i Tr ex

iBi

= ω(Bi).

Take a further derivative to obtain

∂i∂j Φ(x(ω)) = ∂j Tr ex
iBjBi − ω(Bi)ω(Bj)

= Tr ([Bj − ω(Bj)]
K

ρBi

= Tr [e(e)

j ]
K
ρ (Bi − ω(Bi))

= gij(ω).

�

4.2.2 Duality

The potential Φ(x) is a strictly convex function because its Hessian is a positive
definite matrix. Hence it has a Legendre dual, which is given by

Φ∗(y) = sup{xiyi − Φ(x) : x ∈ R
n2−1}, y ∈ R

n2−1.
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It is well-known that the supremum in this expression is actually a maximum that
is reached at the unique solution x of the set of equations ∂iΦ(x) = yi. A dual
coordinate x∗(ω) is now defined by x∗(ω) = y when x = x(ω) solves the set of
equations ∂iΦ(x) = yi. It satisfies

Φ(x∗(ω)) = [xix∗i ]ω − Φ(x(ω)) for all ω ∈ Mn. (4.6)

Proposition 18 The dual coordinates X∗
i (ω) have the following properties

(a) The correspondence x(ω) ↔ x∗(ω) is one-to-one;

(b) The dual of the relation ∂iΦ(x) = x∗i is

xj(ω) =
∂

∂x∗j
Φ∗(x∗)

∣

∣

∣

∣

x∗=x∗(ω)

(4.7)

(c) The inverse of the metric tensor is given by

∂2

∂x∗i ∂x
∗
j

Φ∗(x∗)

∣

∣

∣

∣

x∗=x∗(ω)

= gij(ω) (4.8)

Proof

a) The one-to-one correspondence follows because the potential Φ(x) is strictly
convex and hence it has a unique tangent plane at each point ω ∈ Mn.

b) Take the derivative from (4.6). This gives

∂

∂x∗j
Φ∗(x∗) = xj(ω) + x∗i (ω)

∂xi

∂x∗j
− ∂

∂x∗j
Φ(x) (4.9)

Use the chain rule to evaluate

∂

∂x∗j
Φ(x) =

(

∂

∂xi
Φ(x)

)

∂xi

∂x∗j

= x∗i (ω)
∂xi

∂x∗j
.

Hence, two terms of (4.9) cancel each other and (4.7) follows.
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c) Take another derivative. This gives

∂2

∂x∗i ∂x
∗
j

Φ∗(x∗) =
∂

∂x∗i
xj(ω). (4.10)

From

gij =
∂xi

∂x∗k

∂x∗k
∂xj

=
∂xi

∂x∗k
gkj

it follows that

∂xi

∂x∗k
= gik.

Hence, (4.10) becomes (4.7).

�

4.2.3 The tracial state

The tracial state ωc is defined by

ωc(A) =
1

n
Tr A, A ∈ B(Cn).

It satisfies ωc(AB) = ωc(BA) for all A,B and for that reason it is called a central
state.

All states of a commutative C∗-algebra are central states.

A short calculation gives

xi(ωc) = ωc(Bi) =
1

n
Tr Bi = 0

[ei]ωc(A) =
1

n
Tr BiA

gi,j(ω
c) =

1

n
δi,j.

These are the same results, up to a scaling factor, as in the case of the Bures metric.
The two metrics coincide on the tangent space TωcMn at ωc. In the case of the
Bures metric the m-connection has also a flat dual connection. However, it does
not consist of exponential arcs as they have been defined in Section 3.2.2.
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4.2.4 Generalization

Note that the coordinates x and the dual coordinates x∗ vanish when the state ω is
the central state ωc. These coordinates are therefore said to be centered at ω = ωc.
Also the potential Φ(ω) is minimal at the central state. A generalization of the
Legendre structure so that it becomes centered at an arbitrary state ω inMn follows
below. In particular, the potentialΦ(x) is generalized to Φω(A), A = A∗, centered
at ω ∈ Mn.

In the parameterized case the Legendre structure of dually flat manifolds makes
use of the self-duality of Euclidean space Rn. Here, the manifold Mn consists
of faithful states. They belong to the dual of the space of Hermitian matrices A.
The dual of the map ω : A 7→ ω(A) is the map A : ω 7→ ω(A). Therefore the
potentialΦω is a function of a Hermitian matrixA and the dual potentialΦ∗ should
be labeled with a Hermitian matrix A.

Let the divergence between states φ and ω with density matrices σ, ρ be defined by
D(φ||ω) = D(σ||ρ). The potential Φω centered at ω ∈ Mn is now defined as the
Legendre transform of the divergence φ 7→ D(φ||ω)

Φω(A) = sup{φ(A)−D(φ||ω) : φ ∈ Mn}, A = A∗. (4.11)

Proposition 19 Assume A = A∗ satisfies ω(A) = 0. Then one has

(a) The maximum in the r.h.s. of (4.11) is reached for φ = ψA with corre-
sponding density matrix τA such that cρ(τA) = A;

(b) The maximum value is given by

Φω(A) = D(ω||ψA) = log Tr exp(log ρ+ A);

(c) The inverse transform is given by

D(φ||ω) = sup{φ(A)− Φω(A) : A = A∗ and ω(A) = 0}.

Proof of (a) Let τA = exp(log ρ+ A)/ Tr exp(log ρ+ A)

Then it holds that cρ(τA) = log τA − log ρ+D(ρ||τA) = A and

ψA(A)−D(τA||ρ) = Tr τA(A− log τA + log ρ)
= log Tr exp(log ρ+ A)

Let us show that ψA chosen in this way maximizes the quantity φ(A)−D(φ||ω).
One calculates

0 ≤ D(σ||τA) = Tr σ(log σ − log τA)
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= D(σ||ρ)− φ(A) + log Tr exp(log ρ+ A)
= [ψA(A)−D(ψA||ω)]− [φ(A)−D(φ||ω)]

This shows the inequality

φ(A)−D(φ||ω) ≤ ψA(A)−D(ψA||ω).
It implies (a).

Proof of remainder of (b) Note that

log Tr exp(log ρ+ A) = log Tr exp(log τA +D(ρ||τA))
= D(ρ||τA) = D(ω||ψA) (4.12)

Proof of (c) D(φ||ω) ≥ φ(A) − Φω(A) follows from the definition of Φω. Let
A = cρ(σ). Then the density matrix σ of φ satisfies σ = τA for all A = A∗

satisfying Tr ρA = 0. Hence, equality is reached in (4.11).

�

4.2.5 Fréchet derivatives

A known property of the Legendre transform, used already in Section 4.2.2,

f(x) → f ∗(x∗) = sup
x
{xx∗ − f(x)}

is that the maximum is reached when f ′(x) = x∗. In the context of Banach spaces
and their duals this property becomes the following: The maximum of φ(A) −
Φω(A) is reached when A is such that φ(B) = dBΦω(A) where dB is the Fréchet
derivative of Φω(A) in direction B.

Proposition 20 dBΦω(A) = ψA(B)

Proof

Recall that the definition of the Fréchet derivative dBΦω(A) requires that the linear
map B 7→ φ(B) is such that

|Φω(A + ǫB)− Φω(A)− ǫφ(B)| = o (ǫ)

A short calculation gives

Φω(A+ ǫB) = log Tr exp(log ρ+ A+ ǫB)
= log Tr exp(log ρ+ A)[1 + ǫψA(B) + O(ǫ2)]
= Φω(A) + ǫψA(B) + O(ǫ2) (4.13)

�



Chapter 5

Exponential families of density

matrices

The study of exponential families of density matrices and corresponding exponen-
tial families of states on aC∗-algebra or a von Neumann algebra is well established
in the present finite-dimensional case. The final Section of the Chapter discusses
the problems arising when states on infinite-dimensional algebras are considered.

5.1 A family of states

5.1.1 Definitions

A statistical model is a set S of probability measures on a measure space X, µ
parameterized by an injective map

θ ∈ Θ 7→ µθ ∈ S, Θ ⊂ R
m

A quantum statistical model is a set S of states on a C∗-algebra A parameterized
by an injective map

θ ∈ Θ 7→ ωθ ∈ S, Θ ⊂ R
m

The main advantage of working with models is that the number of parameters m
can often be kept small compared to the dimension of the C∗-algebra A. This is
especially relevant when the dimension is infinite.

Definition 5 The states ωθ of a (quantum) statistical model θ ∈ Θ 7→ ωθ form an
exponential family MH if ∃ self-adjoint operators Hk, k = 1, 2, · · · , m, in B(Cn)

65
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such that

ρθ = exp(θkHk − α(θ)), θ ∈ Θ

with α(θ) = log Tr exp(θkHk). The set of operators H1, H1, · · · , Hk, I is as-
sumed to be linearly independent. The ρθ are the density matrices of the states
ωθ.

Notes In Statistical Physics the quantum exponential family is being used since
long. Many quantum statistical models have been studied in great detail. An expo-
nential family of probability distributions is called a Gibbs distribution.. A quan-
tum exponential family is called a quantum Gibbs state. The operators Hk are
pieces of the quantum Hamiltonian.

5.1.2 Properties

An important property of the normalization α(θ) is

∂iα(θ) = ∂i log Tr exp(θkHk)

=
1

Tr exp(θkHk)
∂i Tr exp(θkHk)

= Tr ρθHi

= ωθ(Hi).

Notations Introduce the notation Ui(θ) = ωθ(Hi). Later it is shown that the Ui
are coordinates dual to the parameters θi. Let also cθ(ρη) = cρθ(ρη).

Further properties are

Proposition 21 One has

(a) D(ρθ||ρη) = (θk − ηk)Uk(θ)− α(θ) + α(η)

(b) cθ(ρη) = (ηk − θk)(Hk − Uk(θ))

Proof

One has

D(ρθ||ρη) = Tr ρθ(log ρθ − log ρη)
= Tr ρθ

[

(θk − ηk)Hk − α(θ) + α(η)
]

= (θk − ηk)Uk(θ)− α(θ) + α(η)

and

cθ(ρη) = cρθ(ρη) = log ρη − log ρθ +D(ρθ||ρη)
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= (ηk − θk)(Hk − Uk(θ)).

�

5.1.3 Tangent vectors

Tangent vectors χη ≡ χωη
are given by

[χη]ωθ
(A) = Tr [cθ(ρη)]

K

θA
= (ηk − θk)[e(H)

k ]θ(A)

with basis vectors given by

[e(H)

k ]θ(A) = Tr [Hk − Uk(θ)]
K

θA.

These tangent vectors belong to the subspace of TθMn spanned by the [e(H)

k ]θ.

In this basis the metric tensor reads

gH
ij(θ) = (e(H)

i , e
(H)

j )θ = Tr [Hi − Ui(θ))]
K
θ(Hj − Uj(θ))

= Tr (Hi − Ui(θ)))[Hj − Uj(θ)]
K

θ

= Tr [Hi]
K

θHj − Ui(θ)Uj(θ). (5.1)

The quantity

〈〈Hi − Ui, Hj − Uj〉〉θ
is called a ’Generalized covariance matrix’ (see for instance Section 7.3 of [45]).
It is ’generalized’ because from one of the two entries a Kubo transformation is
involved.

5.1.4 The Fisher information matrix

The definition of the Fisher information matrix in the commutative case reads

Ijk(θ) = Eθ(∂i log pθ)(∂j log pθ)
= −Eθ∂i∂j log pθ.

A straightforward generalization is not obvious. Should one use

ωθ ((∂i log ρθ)(∂j log ρθ))

or

−ωθ (∂i∂j log ρθ)?
In general, these expressions differ because ∂i log ρθ does not commute with ρθ.
This point has been stressed in particular by Petz. In [57], Section 10.3, he con-
cludes that there exists “... a reasonable but still wide class of possible quantum
Fisher informations.”
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Figure 5.1: A level set of the parabolic function in R2. It consists of all points η
satisfying |η2| ≤ c. This is the interior of a circle in the η-plane, including the
circle itself.

5.1.5 Pythagorean relation

Lemma 8 For any state φ ∈ Mn the function

η ∈ R
m 7→ fφ(η) = α(η)− ηkφ(Hk)

is strictly convex with compact level sets.

Proof Take η 6= 0 and λ > 0. ,The condition fφ(λη) ≤ c is satisfied if and only
if

log Tr exp(ληkHk − ληkφ(Hk) ≤ c
↔ Tr exp(ληkHk) ≤ exp(c+ ληkφ(Hk))(5.2)

The operator ηkHk has at least one eigenvalue µ satisfying µ > ηkφ(Hk) because
φ is faithful and ηkHk is not a multiple of the identity I. Hence the requirement
fφ(λη) ≤ c implies that

eλµ < Tr exp(ληkHk) ≤ exp(c + ληkφ(Hk)).

The former inequality follows because the trace can be taken in a basis of eigen-
vectors. It decreases when only one of the positive terms is withhold. Take the
logarithm to obtain

λµ < c+ ληkφ(Hk).

This can be written as

λ ≤ c

µ− ηkφ(Hk)
.
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Figure 5.2: ’Orthogonal projection’ of an arbitrary state φ onto the manifold MH

of the statistical model.

One reaches the conclusion that the level sets {η : fφ(η) ≤ c} are bounded and
hence compact.

Strict convexity of the function fφ(η)follows from ∂i∂jfφ(η) = gH
ij(η) and the

observation that the metric tensor is a positive-definite matrix.

�

Theorem 8 For any φ in Mn there exists a unique θ ∈ Rm such that

D(φ||ωη) = D(φ||ωθ) +D(ωθ||ωη), ∀η ∈ R
m

It is fixed by the requirement that Uk(θ) = φ(Hk).

Proof

WriteD(φ||ωη) = Tr σ log σ+fφ(η). Because fφ is strictly convex with compact
level sets there exists a unique θ such that

D(φ||ωθ) = min
η

{D(φ||ωη)}

It satisfies ∂iD(φ||ωη)
∣

∣

η=θ
= 0. The latter implies that Uk(θ) = φ(Hk). Now

calculate

D(φ||ωη)−D(φ||ωθ) = Tr σ(log ρθ − log ρη)
= (θk − ηk)φ(Hk)− α(θ) + α(η)
= (θk − ηk)Uk(θ)− α(θ) + α(η)
= D(ωθ||ωη) (5.3)

This proves the Pythagorean relation.

�
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5.2 The dual geometry

5.2.1 The e-connection

Proposition 22 Assume that the domain Θ is a convex set. Take θ0, θ1 be points
in Θ and let θt = (1 − t)θ0 + tθ1 Then t 7→ ωθt is an exponential arc connecting
ωθ1 to ωθ0 .

The proof is straightforward.

See Section 1.8 of (Amari, Nagaoka, 2000) for the following definition.

Definition 6 A submanifold S of Mn is said to be autoparallel w.r.t. ∇ if for all
ω ∈ S and for any pair of vector fields V,W of the submanifold S the vector
[∇VW ]ω belongs to the tangent plane TωS.

Proposition 23 Assume Θ ⊂ Rm is an open convex set. Then the family of expo-
nential states MH is an autoparallel submanifold of Mn

Proof

(a) S is a submanifold The coordinates xi are related to the parameters θk by

xi(ωθ) = (log ρθ, B
i)HS = θk Tr HkB

i.

- The relation is linear, hence it is C∞;

- The derivatives Tr HkB
i are linearly independent vectors in Rn2−1;

- The intersection U ∩Θ with U open in Rn is open.

(b) S is autoparallel in Mn The geometry of Mn. is flat and Θ ⊂ Rn is an
affine subset of the parameter space Rn2−1. Hence, by Theorem 1.1. of (Amari
Nagaoka, 2000) S is autoparallel in Mn.

�

5.2.2 The potential Φθ(A)

Introduce the notation Φθ(A) ≡ Φωθ
(A), where Φωθ

is the potential introduced in
Section 4.2.4.

Proposition 24 Assume Θ = R
m. If A = A∗ belongs to lin{I, H1, · · ·Hm} and

ωθ(A) = 0 then there exists η ∈ Θ such that

(a) A = cθ(ρη);
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(b) ωη maximizes φ 7→ φ(A)−D(φ||ωθ);
(c) Φθ(A) = (θk − ηk)Uk(θ)− α(θ) + α(η).

Proof

By assumption the matrix A is a linear combination of the Kk and the identity.
Hence one can write A = a0 + akHk. Let ηk = θk + ak. The assumption that
ωθ(A) implies that a0 + akUk(θ) = 0.

(a) Calculate

cθ(ρη) = (θk − ηk)(Hk − Uk(θ))
= ak(Hk − Uk(θ))
= A− a0 − akUk(θ)

= A.

(b) The maximum is reached by ψA such that cθ(τA) = A holds. From cθ(ρη) =
A it then follows that τA = ρη and ψA = ωη.

(c) Section 4.2.4, Item (b) of Proposition 19, implies that

Φθ(A) = D(ωθ||ωη).

From Section 5.1.2, Item (a) of Proposition 21 one obtains

D(ωθ||ωη) = (θk − ηk)Uk(θ)− α(θ) + α(η).

Both statements together prove (c).

�

Introduce the potential ΦH
θ(η) = Φθ(cθ(ρη)). It follows from Item (b) of Proposi-

tion 19 that ΦH
θ(η) = D(ρη||ρθ). The following corollary show that Ui(η)− Ui(θ)

is the dual coordinate of ηi w.r.t. this potential and that the Hessian is the metric
tensor gH.

Corollary 4 The first derivative of the potential Φθ(η) satisfies

∂

∂ηi
ΦH

θ(η)) = Ui(η)− Ui(θ). (5.4)

The second derivative satisfies

∂2

∂ηj∂ηi
ΦH

θ(η) = gH

ij(η).
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Proof

One calculates

∂

∂ηi
ΦH

θ(η)) =
∂

∂ηi
[

(θk − ηk)Uk(θ) + α(η)− α(θ)
]

= −Ui(θ) +
∂

∂ηi
α(η).

Use ∂iα(η) = Ui(η) (see Section 5.1.2) to find (5.4).

The second derivative follows from

∂2

∂ηj∂ηi
Φθ(A) =

∂

∂ηj
Ui(η)

=
∂

∂ηj
Tr exp(ηkHk − α(η))Hi

= Tr [Hj ]
K
ηHi −

∂α

∂ηj
ωη(Hi)

= 〈〈Hi − Ui(η), Hj − Uj(η)〉〉η
= gH

ij(η) (5.5)

�

5.3 Quantum estimation

5.3.1 Quantum measurements

The quantum counterpart of a partition of sample space is a sequence (Ek)k of
orthogonal projection operators, 2-by-2 commuting and summing up to the identity
∑

k Ek = I.

A von Neumann type measurement returns probabilities pemp

k , one for each projec-
tion operator Ek. In other words, the result of the measurement is the empirical
density matrix ρemp =

∑

k p
emp

k Ek and the corresponding empirical state φemp. The
meaning of pemp

k is the frequency of the ’event’ that the result is in the range EkH
of the projection operator Ek. Results of a von Neumann type measurement are
never assigned to elements of the Hilbert space not belonging to the range of any
of the Ek.

In Quantum Physics elements of the Hilbert space are called wave functions.. One
encounters the phrase ”Reconstruction of the wave function”. The question one
poses is what was the state of the system before measuring? The assumption is that
the measurement disturbes the state of the system in such a way that the outcome
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of the measurement is always in the range of one of the projection operators Ek,
never a linear combination of such outcomes.

That the measurement disturbes the state of the system has several consequences

- It is necessary to prepareN copies of system all prepared in the same way;

- N measurements are performed, each time a fresh copy is used;

- Eventually, the preceeding steps have to be repeated with different mea-
surement setups because von Neumann type measurements return results
only for a set of mutually commuting operators .

Minimal divergence criterion A geometrically motivated choice for the optimal
reconstructed state uses the ’orthogonal projection’ discussed in Section 5.1.5 on
the Pythagorean relation. It selects the model state ωθ minimizing the divergence
map η 7→ D(φemp||ωη).

Proposition 25 Let θ be the value which minimizes the map η 7→ D(φemp||ωη).
Then the state ωθ satisfies ωθ(Hk) = φemp(Hk) for all k.

Proof

It is proved in Theorem 8 that Uk(θ) = ωθ(Hk) = φemp(Hk).

�

It is not clear whether this criterion is the best one can do. If the operators Hk

determining the manifold MH coincide with the projection operators Ek then the
expectation values ωθ(Ek) coincide with the empirical values φemp(Ek) = pemp

k . To
realize this property in a more general context is desirable.

5.3.2 Estimators

A recent paper on the quantum estimation problem is [72].

The operators Hk form an unbiased estimator for the dual parameters Uk(θ) be-
cause ωθ(Hk) = Uk holds for all θ ∈ Θ.

The estimatorHk is said to be efficient if the inequality of Cramér-Rao holds as an
equality.

In the non-commutative case the quantum Fisher information matrix is non-unique.
Hence the choice of metric is non-unique. Note that the inequality of Cramér-Rao
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depends on the choice of metric. Here the metric of Bogoliubov is used. The Hk

are an efficient estimator for this metric.

The quantum version of the Theorem of Cramér-Rao states that generalized co-
variance is minimal when the estimator equals the set of operators Hk. This is
Theorem 9 of (Hasegawa, 1997) [40].

Theorem 9 For any unbiased estimator Xk the matrix

〈〈Xi − ωθ(Xi), Xj − ωθ(Xj)〉〉θ − [(gH)ij]θ

is non-negative-definite and vanishes for Xk = Hk.

Proof

By assumption is ωθ(Xj) = Uj(θ) for all θ. This implies ∂iωθ(Xj) = ∂iUj(θ) =
gH
ij(θ). Choose ui, vj arbitrary in Rm. Then one has

uigH
ij(θ)v

j = ui∂iUj(θ)v
j = ui∂iωθ(v

jXj)

= Tr [ui(Hi − Ui(θ))]
K

θ[v
jXj]

= Tr [ui(Hi − Ui(θ))]
K

θ[v
j(Xj − ωθ(Xj))]

=

∫ 1

0

dw Tr ρwθ [u
i(Hi − Ui(θ))]ρ

1−w
θ [vj(Xj − ωθ(Xj))]

=

∫ 1

0

dw Tr A∗
wBw (5.6)

withAw = ρ
(1−w)/2
θ [ui(Hi−Ui(θ))]ρw/2θ andBw = ρ

(1−w)/2
θ [vj(Xj−ωθ(Xj))]ρ

w/2
θ .

Use Schwarz inequality to find

(

uigH

ij(θ)v
j
)2

=

(
∫ 1

0

dw Tr A∗
wBw

)2

≤
∫ 1

0

dw Tr A∗
wAw ×

∫ 1

0

dw Tr B∗
wBw

=
(

Tr [ui(Hi − Ui(θ))]
K[uj(Hj − Uj(θ))]

)

×
(

Tr [vk(Xk − ωθ(Xk))]
K[vl(Xl − ωθ(Xl))]

)

= uigH
ij(θ)u

j ×
(

vk(Xk − ωθ(Xk), Xl − ωθ(Xl))θv
l
)

. (5.7)

Take v = uand divide out one factor of the r.h.s. to obtain

uigH

ij(θ)u
j ≤ ui(Xi − ωθ(Xi), Xj − ωθ(Xj))θu

j.

�
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5.4 Examples

5.4.1 The Pauli spin

See Section 2.4, “The case n=2”.

The simplest exponential family contains the states ωθ, θ ∈ R, with density matri-
ces

ρθ ∼ exp(θσ3) = cosh θ + σ3 sinh θ.

This the commutative two-state model.

The requirement that the matrices {I, H1, · · · , Hm} must be linearly independent
implies that m ≤ 3. Consider for instance, ρ(θ) ∼ exp(θ1σ3 + θ2σ1). This two-
parameter model is an exponential family of quantum states. Explicit calculations
are left as an exercise.

5.4.2 Two spins

See Section 1.4, “A historical experiment”.

Let H be the orthogonal projection onto a one-dimensional subspace of C2 ⊗ C2.
Consider the density matrix

ρθ =
eθH + I−H

eθ + 3
.

with normalization function

α(θ) = log Tr exp θH = log(eθ + 3).

A short calculation gives

U(θ) = EθHωθ(H) =
eθ

eθ + 3
.

Let an observable Xϕ be defined by

Xϕ = σ3 ⊗ (cos(2ϕ)σ3 + sin(2ϕ)σ1).

It satisfies X2
ϕ = I⊗ I. Now calculate

EθXϕ = ωθ(Xϕ)

= cos(2ϕ)
Tr (eθH + I−H)σ3 ⊗ σ3

eθ + 3
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+ sin(2ϕ)
Tr (eθH + I−H)σ3 ⊗ σ1

eθ + 3

= cos(2ϕ)
eθ − 1

eθ + 1
Tr Hσ3 ⊗ σ3

+ sin(2ϕ)
eθ − 1

eθ + 1
Tr Hσ3 ⊗ σ1 (5.8)

To make this result tractable make use of the isomorphism C2 ⊗ C2 ≃ C4. In
particular us in what follows that

σ3 ⊗ σα ≃
(

σα 0
0 −σα

)

.

Choose nowH equal to the one-dimensional projection operator defined byHψ =
ψ with ψ = 1

2
(1,−1,−1, 1)T. It satisfies

Tr Hσ3 ⊗ σ3 =
1

4
(σ3 ⊗ σ3ψ, ψ) = 1,

Tr Hσ3 ⊗ σ1 =
1

4
(σ3 ⊗ σ1ψ, ψ) = 0.

Use this to evaluate

ωθ(Xϕ) = cos(2ϕ)
eθ − 1

eθ + 1
.

Compare this result with the result from Section 1.4

pemp =
1

2
(1 + φemp(Xϕ)) =

1

2
+ κ cos(2ϕ).

Both results agree with κ = 1/2 THis shows that the experiment discussed in
Chapter 1 can be modelled by an exponential family of quantum states.

5.5 Infinite-dimensional case

5.5.1 Introduction

The extension of non-commutative Information Geometry to the infinite-dimensional
context is treated in a number of publications. Let me mention [47, 49, 50, 51, 55],
recent works of Ciaglia et al [69, 71] and of the present author [67, 73].

Some of the problems that arise when the Hilbert space H is allowed to be infinite-
dimensional are discussed below.
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Matrices become operators, i.e. linear maps D ⊂ H 7→ H with domain of
definition D that can be taken to be all of H in the case of bounded operators and
that is assumed to be a dense subspace of H in the case of unbounded operators.
Bounded operators have a finite supremum norm and, if densely-defined, extend
by continuity to all of H .

Note that even simple systems of Quantum Mechanics such as the quantum har-
monic oscillator involve an infinite-dimensional Hilbert space H . Hence, the
study of the infinite-dimensional case is more than just an academic exercise.

- The algebra A is a von Neumann algebra of bounded operators on a separable
Hilbert space H .

- In the general case, not all states on A are normal states.. Note that a state
ω of A is normal if and only if there exists a density matrix ρ on H such that
ω(A) = Tr ρA for all A ∈ A. This is not the definition but a characterisation —
See Theorem 2.4.21 of [22].

- The model states ωθ with θ ∈ Θ ⊂ Rm are assumed to be normal states on
A represented by density matrices ρθ. A density matrix (density operator) ρ is a
trace-class positive operator satisfying Tr ρ = 1.

- The operators Hkdefining the manifold MH may be unbounded self-adjoint op-
erators with domains Dk.

- Note thatH = H∗ requires that the domains ofH andH∗ coincide: dom (H) =
dom (H∗). In general, a symmetric operator satisfies dom (H) ⊂ dom (H∗) and
the restriction opf H∗ to the domain of H coincides with H .

Let us now list some of the delicate problems that arise.

Problem The operators θkHk are only defined on the intersection ∩Dk. It can
happen that this intersection is the null space {0}. It is clear that in such a case the
sum θkHk is rather meaningless.

An obvious solution to this problem is to require that the operators H2, · · ·Hm

bounded relative to H1. An operator A is relatively bounded w.r.t. the operator T
if there exists constants a ≥ 0 and b ≥ 0 such that

||Au|| ≤ a||u||+ b||Tu|| for all u ∈ dom (T ) ⊂ dom (A).

See Theorem 4.3 in Sect V of [9]. If b < 1 then one has in addition that the domain
of the operator T is unchanged by adding the ’small perturbation’ A: dom (T +
A) = dom (T ).
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Problem The operator exp(θkHk) must be trace-class. If it is then it becomes a
density operator by normalizing its trace.

Usually it is necessary to restrict the parameter domain Θ to the set of θ-values for
which one can prove that the operator exp(θkHk) is trace-class. An assumption
often made in Statistical Physics is that the operators Hk bounded from above or
from below. They appear in an exponential. If all eigenvalues of θkHk are bounded
from above then exp(θkHk) is a bounded operator. Indeed, eigenvalues of θkHk

diverging to −∞, after exponentiation, tend to 0.

Problem The divergence (Bures’ divergence or Umegaki’s relative entropy)D(φ||ω)
may diverge even for normal states φ and ω close in norm.

A possible solution is the restriction to states φ ’absolutely continuous’ w.r.t. to the
given state ω. To do so one needs of course a generalization of absolute continuity
to the non-commutative case. Alternatively, Streater [49] argues that a stronger
topology is needed. In fact, this problem occurs also in the commutative case and
motivated the introduction of Orlicz spaces by Pistone and Sempi [37].

5.5.1 Examples

A simple example of a one-parameter exponential family of density matrices on
separable Hilbert space is the quantum harmonic oscillator. The three-parameter
Jaynes-Cummings model [6, 44] is more involved but still tractable.

Harmonic oscillator Choose an orthonormal basis (fn),n=0,12,··· in separable
Hilbert space H .

Proposition 26 A self-adjoint operator H is defined by Hfn = nfn for all n.

Proof

Let En denote orthogonal projection onto Cfn. The spectral theorem implies that
H =

∑

n nEn is a self-adjoint operator with domain

dom (H) = {f :
∑

n

n2|(f, fn)|2 < +∞}.

�

Choose the domain Θ of the model parameter θ equal to Θ = (−∞, 0). The
quantum harmonic oscillator is the one parameter statistical model θ ∈ Θ 7→ ωθ
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with

ρθ = exp(θH − α(θ)) and
α(θ) = Tr exp(θH).

The quantum harmonic oscillator is an exponential family of quantum states.

Jaynes-Cummings model Consider the Hilbert space H = H HO ⊗ C2 with
H HO the Hilbert space of the quantum harmonic oscillator andC2 the 2-dimensional
Hilbert space of a Pauli spin. Choose H1 = HHO ⊗ I and H2 = I ⊗ σ3. Introduce
the notations | ↑〉 = (1 0)T and | ↓〉 = (0 1)T.

An operator H3 is defined by linear extension of

H3fn ⊗ | ↑〉 =
√
n+ 1fn+1 ⊗ | ↓〉,

H3fn ⊗ | ↓〉 =
√
n− 1fn−1 ⊗ | ↑〉.

An arbitrary element f of the Hilbert space H can be expanded into basis vectors
by

f =
∑

n

∑

s=↑↓

λn,sfn ⊗ |s〉.

It belongs to the domain of the operator H1 if the squared norm satisfies

||H1f ||2 =
∑

n

∑

s

n2|λn,s|2 < +∞.

Make now the estimates

||H3f ||2 =

[

∑

n,s

n|λn,s|2 +
∑

n

|λn,↑|2 −
∑

n

|λn,↓|2 − |λ0,↓|2
]

≤ ‖|f ||||H1f ||+ ||f ||2

≤
(

||f ||+ 1

2
||H1f ||

)2

. (5.9)

Here, to estimate
∑

n,s n|λn,s|2 the concavity of the square root is used. This
estimate shows that θ3H3 is relatively bounded by θ1H1 with b = |θ3/2θ1|. if
|θ3| < 2|θ1| then θkHk is self-adjoint with domain equal to dom (H1).

Note that θ1 < 0 is needed to make the operator ρθ trace class.
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exponential family, 65
exponential map, 21, 33

faithful, 13
faithful state, 20
Fisher information matrix, 73
flat connection, 59
Fubini-Study metric, 14

Generalized covariance matrix, 67
geodesic, 57
geodesically complete, 33
Gibbs distribution, 66
GNS representation, 44

Hamiltonian, 66
Hellinger distance, 14, 20
hidden variables, 8

Jaynes-Cummings model, 78

Kubo transform, 35

Levi-Civita connection, 56

m-connection, 21, 56
metric connection, 56
modular conjugation operator, 46
modular operator, 46

normal states, 77

Orlicz spaces, 78
orthogonal projection, 69, 73

parallel transport, 55
positive operator, 3
prior probability, 7

quantum statistical model, 65
quantum conditional expectation, 2
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quantum entanglement, 2
quantum exponential family, 65
quantum harmonic oscillator, 78
Quantum Optics, 10
Quantum Statistics, 4

Radon measure, 5
relative entropy, 13
relatively bounded operator, 77
Riemannian geometry, 24

Schmidt decomposition, 16
SLD, 22
spectral theorem, 78
state, 4
statistical distance, 14, 20
Statistical Inference, 6
statistical model, 6, 65
strictly positive operator, 3
supremum norm, 2
symmetric logarithmic derivative, 22

tangent space, 20
tangent vector, 21
trace-class operators, 77
traceclass operator, 4
tracial state, 62

Uhlmann’s theorem, 17
Umegaki’s relative entropy, 14, 37
unbiased estimator, 73

vector state, 4
von Neumann algebra, 5
von Neumann algebras, 3
von Neumann type measurement, 72

Wasserstein distance, 14
wave function, 72


	Quantum Probability
	Introduction
	Quantum expectations
	The algebra of n-by-n matrices
	Expectation values
	Density matrices
	Classical probability
	Notes

	Conditional probabilities
	Empirical data
	Updating
	Breaking of statistical independence

	A historical experiment
	The EPR paradox
	The Bell inequalities


	The Bures metric
	Introduction
	The Bures distance
	Bures' definition
	Technicalities
	The theorem
	Notes

	Geometry of the manifold of states
	Tangent vectors
	The symmetric logarithmic derivative
	Riemannian geometry
	Affine coordinates
	Special role of the tracial state

	The case n=2
	Introduction
	The Bloch sphere

	Appendix

	Exponential arcs
	Introduction
	Motivation
	Useful identities
	The Kubo transform

	Bogoliubov's metric
	Umegaki's relative entropy
	Exponential arcs
	Geodesic completeness
	Bogoliubov's inner product

	Coordinate representation
	Affine coordinates
	The metric tensor

	An alternative approach
	The GNS construction
	Tomita-Takesaki theory
	Generalized Radon-Nikodym derivatives
	Example

	Appendix

	The dually flat geometry
	A flat geometry
	Parallel transport
	Dual geometries
	Theorem
	Coordinate representation
	Covariant derivatives
	Flatness

	The Legendre structure
	A Hessian geometry
	Duality
	The tracial state
	Generalization
	Fréchet derivatives


	Exponential families
	A family of states
	Definitions
	Properties
	Tangent vectors
	The Fisher information matrix
	Pythagorean relation

	The dual geometry
	The e-connection
	The potential (A)

	Quantum estimation
	Quantum measurements
	Estimators

	Examples
	The Pauli spin
	Two spins

	Infinite-dimensional case
	Examples



