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Abstract
An issue in computerized x-ray tomography is the limited size of available detectors relative to objects
of interest. A solutionwas provided in the past two decades by positioning the detector in a lateral
offset position, increasing the effective field of view (FOV) and thus the diameter of the reconstructed
volume.However, this introduced artifacts in the obtained reconstructions, caused by projection
truncation and data redundancy. These issues can be addressed by incorporating an additional data
weighting step in the reconstruction algorithms, known as redundancyweighting. In this work, we
present an implementation of redundancyweighting in thewidely-used simultaneous iterative
reconstruction technique (SIRT), yielding theweighted SIRT (W-SIRT)method. The new technique
is validated using geometric phantoms and a rabbit specimen, by performing both simulation studies
as well as physical experiments. The experiments are carried out in a highlyflexible stereoscopic x-ray
system equippedwith x-ray image intensifiers (XRIIs). The simulations showed that higher values of
contrast-to-noise ratio could be obtained using theW-SIRT approach as compared to aweighted
implementation of the simultaneous algebraic reconstruction technique (SART). The convergence
rate of theW-SIRTwas accelerated by including a relaxation parameter in theW-SIRT algorithm,
creating the aW-SIRT algorithm. This allowed to obtain the same results as theW-SIRT algorithm,
but at half the number of iterations, yielding amuch shorter computation time. The aW-SIRT
algorithmhas proven to performwell for both large as well as small regions of overlap, outperforming
the pre-convolutional Feldkamp–David–Kress algorithm for small overlap regions (or large detector
offsets). The experiments confirmed the results of the simulations. Using the aW-SIRT algorithm, the
effective FOVwas increased by>75%, only limited by experimental constraints. Although anXRII is
used in this work, themethod readily applies toflat-panel detectors as well.

1. Introduction

An issue concerning digital x-ray detectors is their limited size, therefore limiting the size of objects that can be
imaged in radiography or for tomographic reconstruction. For radiography purposes, solutions were provided
in the formof semi-automatic (Dewaele et al 1999) or automatic (Wang et al 2018) x-ray image stitching
methods, allowing for an enlargement of the field of view (FOV). This solution is generally not applied to
tomographic reconstruction as amore adequate solutionwas found and developed during the past two decades.
It was already shown early on that the diameter of the reconstructed volume could be increased by positioning
the detector in a laterally shifted, non-centered position relative to the beam axis and tomographic rotation axis
(Cho et al 1996). In this way, each recorded projection contains data of at least half thewidth of the object under
consideration, and the effective imagingwidth is enlarged to amaximumof twice the physical width of the

RECEIVED

26March 2021

REVISED

24 June 2021

ACCEPTED FOR PUBLICATION

21 July 2021

PUBLISHED

13August 2021

© 2021 Institute of Physics and Engineering inMedicine

https://doi.org/10.1088/1361-6560/ac16bc
https://orcid.org/0000-0002-9753-031X
https://orcid.org/0000-0002-9753-031X
https://orcid.org/0000-0001-5746-4621
https://orcid.org/0000-0001-5746-4621
https://orcid.org/0000-0003-4225-2487
https://orcid.org/0000-0003-4225-2487
mailto:joaquim.sanctorum@uantwerpen.be 
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac16bc&domain=pdf&date_stamp=2021-08-13
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac16bc&domain=pdf&date_stamp=2021-08-13


detector, depending on the amount of detector offset (Wang 2002). Yet, adjustments to convenient
reconstruction algorithms are necessary to remove the artifacts that are inherent to this detector offsetmethod.

Positioning the detector in a laterally shifted position causes truncation of the image data, leading to high-
frequency components in Fourier space, which is one of the sources contributing to artifacts in the
reconstruction. This issuewas identified and a solutionwas proposed by introducing an overlap region in the
scanning geometry (Cho et al 1996), as the overlap region allows for the smoothing of the projection data near
the truncated edge. This smoothing turns the edge gradient into a non-singular profile, eliminating the
corresponding high-frequency components in Fourier space. However, the overlap region also introduces data
redundancy, since parts of the object which lie in this region are imaged over the full 360°, whereas the other
parts are imaged over only 180°. Parker introduced a redundant data weighting scheme for short-scan fan-beam
CT (Parker 1982) and this concept was adopted to detector offset tomography to simultaneously correct for data
redundancy and truncation edge smoothing. In cone-beamCT,with horizontal rotation stages, data
redundancy only occurs in the horizontalmidplane, and data redundancy in non-midplanes is assumed as an
approximation.

Drawing from the results of Parker, redundancy artifacts have been addressed by introducing aweighting
function in the reconstruction algorithms. The redundancy weighting function w t( ) generally depends on the
horizontal detector coordinate t and provides a smooth transition over the redundancy region between the
truncated edge and the uniquely imaged data. In general, the functions have a goniometric form and a zero-
gradient on the redundancy region boundary.

First, the redundancy weighting schemewas implemented in analyticalmethods, such as filtered
backprojection (FBP) and the Feldkamp–David–Kress (FDK)method (Feldkamp et al 1984). Cho et al (1996)
implemented aweighting scheme in the FDK algorithm in twodifferent ways, before or after the convolution
step, referred to as pre-convolutional and post-convolutional weighting. It was shown through simulation
studies that a larger overlap region is required for pre-convolutional weighting, thus limiting the obtainable
diameter of the reconstructed volume.However, the post-convolutional weightingmethod ismore complex as
it needsmore preprocessing steps and it introducesmore severe shading artifacts for small overlap regions. It
was therefore advised to use amoderate overlap region and pre-convolutional weighing, whichwas later also
used byWang in simulation studies in thefield ofmicroCT (Wang 2002). The results were in agreement with
those of Cho et al, and themethod performedwell for different overlap sizes, yielding aflexible way of resizing
the detector FOV.Using theweighting function proposed byWang, Yu et al (2004) improved the numerical
properties of the reconstruction using a large detector offset (and thus a small overlap region) by converting the
weighted cone-beamprojection data to equispaced parallel beamdata. Then, FBPwas used to obtain the
reconstructed volume, yielding a suppression of the shading artifacts as opposed to the FDK algorithm.
Vedantham et al (2020) examined the quantitative properties of three different weighting functions (Cho et al
1996,Wang 2002, Schäfer et al 2011) in a pre-convolutional FDK scheme for cone-beambreast CT. It was found
that the results obtained using the different weighting functionswere equivalent, whichwas to be expected as the
weighing functions, though having a different formulation, were nearly identical. A comparative study between
the use of redundancyweighting in FBP-type and backprojection-filtration-(BPF)-typemethodswas conducted
by Schäfer et al (2011), which showed that BPF-typemethods have the potential of providing better image
quality for small redundancy regions, while FBP-typemethodswere superior in the case of larger overlap
regions.

Besides analytical reconstructionmethods, redundancyweighting schemes have also been implemented in
iterative algorithms.Hansis et al reported the use of redundancyweighting in two different iterative
reconstruction schemes: ordered subset simultaneous algebraic reconstruction technique (OS-SART) and
maximum likelihood ordered subset separable paraboloidal surrogates (MLOS-SPS) (Hansis et al 2010). Instead
of applying the sinusoidal weighting directly to the rawprojections, it was applied to subsets of opposite
correction projection pairs that contribute to the update of the same voxel, where the correction term is
normalized on a voxel level. This way, the unit sum criterion of theweights ( + - =w t w t 1( ) ( ) ) as stated by
Parkerwas circumvented, grantingmore freedom in the choice of w t .( ) It was shown that, for a small
redundancy region, their approach (both SART andML) yielded better results in terms of image uniformity (less
shading artifacts) as compared to FDK. Bian et al implemented the redundancyweighting scheme in two
optimizationmethods (ASD-WPOCS and EM) for sparse data tomography (Bian et al 2012). They found that
their ASD-WPOCSmethod produced superior results in terms of streak artifactmitigation and low-contrast
details as opposed to EMor FDK, opening up possibilities for dose reduction in detector offset CBCT. In the field
ofmicroCT, Sharma et al implemented the redundancy weighting in a hybrid reconstruction scheme tomerge
the benefits of post-convolutional weighted FDK andweighted SART in terms of low- and high-frequency
contributions, suppressing shading artifacts in the reconstruction (Sharma et al 2014).

The standard reconstruction technique used inmedical cone-beam systems is the FDK algorithm, due to its
speed and ease of use.However, the FDK algorithmonly provides reliable results for perfectly circular projection
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tracks, and can therefore not be used in highlymodular imaging systems (unless a specificmodification to the
FDK algorithm is implemented for each change of geometry). Therefore, we propose the first implementation of
the redundancyweighting scheme in the simultaneous iterative reconstruction technique (SIRT), as it can
handlemore complex geometries easily and is thuswidely applicable. The performance of theweighted SIRT
(W-SIRT) algorithm is compared to the pre-convolutional weighted FDK algorithm and aweighted SART (W-
SART) implementation.Wewill consider the practical implications of using the detector offsetmethod in a
highlymodular set-up to estimate themaximumgain in effective detector width. The proposed algorithmwill be
experimentally validated using physical geometric phantoms and a rabbit specimen.

2.Methods

2.1. Redundancyweighting
Positioning the detector in a lateral offset position causes the projections to bewidth-truncated and to contain
redundant data in the vicinity of the projected position of the rotation axis, which is schematically visualized in
figure 1. Both of these issues can be solved by introducing a redundancyweighting function w t( ) in the
reconstruction algorithm. Such a function should assume a value of onewithin the range of the detector outside
of the redundancy region and a value of zero out of the range of the detector.Within the redundancy region, the
function should provide a smooth transition from zero to one, where the unit sumof theweights is to be
respected ( + - =w t w t 1( ) ( ) ). At the edges of the redundancy region, the derivative should be zero. A
function thatmeets these demandswas proposed byWang et al andwill be used further on in thismanuscript
(Wang 2002):
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In the former expression, t is the horizontal detector coordinate. The valueT marks the redundancy region as
depicted infigure 1 and R represents the distance between the source and the detector surface. The typical shape
of theweighting function is shown infigure 1(b).

2.2.W-SIRT implementation
In general, algebraic reconstructionmethods are based on solving the following linear systemof equations:

=Ax p, 2( )

where Î x n is a voxelizedmodel of the volume of attenuation coefficients to be reconstructed, which is
transformed in a set of log-corrected projections Î p m by the projectionmatrix Î ´A m n that represents
the relative contributions of the rays to each pixel of the projections. A trivial way of solving this equation is by
inversion of thematrix A.However, thematrix A is generally not a squarematrix, implying the non-existence of
its inverse.Moreover, the huge size and sparsity of thematrix A do not allow formatrix inversion, and therefore,
iterativemethods are used to estimate the volume x byminimizing the difference between the recorded
projections p and the estimated projections Ax.One of such iterativemethods, which solves aweighted least-
squares problem, is SIRT (Kak and Slaney 1988):

Figure 1. (a) Schematic representation (top view) of a detector surface (D) being placed in a lateral offset positionwith respect to the
line connecting the position of the rotation axis (thick black dot) and the source (S), which is represented by a dashed line. The center
of the detector is depicted using a dotted line, and the offset value is denoted asD.The thick line represents the part of the cone in
which redundant data is recorded, corresponding to the horizontal detector coordinate Î -t T T, .[ ] The distance between the
source and the detector surface equals R. (b) Front view of the detector surface introducing vertical detector coordinate v.The same
symbols as in (a) apply. The thick gray line shows the typical shape of the redundancyweighting function, varying smoothly from0 to 1
from T– to T .
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The factor a is a relaxation parameter that equals 1 in the regular SIRT algorithm. This update scheme is often
presented in itsmatrix notation by defining =x x ,j[ ] =p p ,i[ ] =A a ,ij[ ] =R r ,ij[ ] and =C c :ij[ ]

= + -+x x CA R p Ax , 4k k T k1 ( ) ( )( ) ( ) ( )

where R and C are diagonalmatrices containing the inverted row and column sums, = å =r a1ii j
N

ij1 and

= å =c a1 ,jj i
M

ij1 respectively. It can be proven that in this form, the convergence of the SIRT algorithm is
guaranteed (Gregor andBenson 2008). In this iterative scheme, the redundancyweighting can be implemented
prior to the backprojection step (multiplication by AT ) by introducing the diagonal weightingmatrix W , of
which the diagonal elements correspond to the correct weighting factors calculated using equation (1):

= + -+x x CA RW p Ax . 5k k T k1 ( ) ( )( ) ( ) ( )

We thus obtain theweighted SIRT, orW-SIRT, update scheme, which shall be evaluated using different study
objects. As thematrixW only contains values from zero to one on its diagonal (which are thus its eigenvalues),
convergence is still guaranteed. Reconstructions are carried out using the 1.9.0.dev11 version of theASTRA
toolbox (vanAarle et al 2016) in aMatlab (Mathworks,Massachusetts, USA) environment (version 2019b). To
assess the convergence rate of the proposedmethod, theweighted residual norm (RN) is calculated after each
iteration. The norm is calculated as -Ax p R  with - = - -Ax p Ax p R Ax p .R

T2 ( ) ( )  Themethodwill be
evaluated using some quantitativemeasures, such as root-mean-square contrast (or RMS contrast, CRMS),
contrast-to-noise ratio (CNR), root-mean-squared error (RMSE), and total computation time.

The contrast in the reconstructed volumeswill be assessed using the RMS contrast C ,RMS calculated as
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where N is the number of voxels in the reconstructed volume and x̄ is themean value of the reconstructed
volume. TheCNR is calculated as the difference betweenmean gray values in equally-sized, homogeneous
regions in the signal and the noise divided by the standard deviation of that noise region:
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wherein m stands formean and s stands for standard deviation. In the simulations, RMSE between the
reconstructed volume and the original phantom is calculated as
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with N the total number of voxels in the reconstructed volume. The superscripts ‘rec’ and ‘pha’ stand for
‘reconstructed volume’ and ‘phantom’, respectively. Reconstruction times aremeasured byMatlab.

2.3. Simulations
Prior to physical experiments, theW-SIRT algorithm is compared to the pre-convolutional weighted FDK
algorithm and theweighted SART-TV (W-SART-TV)method presented earlier by Sharma et al referred to as
‘WIR’ in their work (Sharma et al 2014). Following thework of Sharma et al, the TVdenoising is performed
using gradient descent. The phantomused in the simulations is a slightly elongated version of the 3D Shepp–
Logan phantom (Shepp and Logan 1974) of size 1341 voxels´678 voxels´283 voxels with a voxel size of»
0.143mm.The goal of the simulations is to compare themethods in terms of convergence rate, reconstruction
time, and theCNR andRMSEof the reconstructed slices for both a large and a small overlap region.
Furthermore, we assess the performance of theWIRmethodwithout applying TVdenoising to the
reconstructed volume, referred to as weighted SARTorW-SART. Finally, the possibility of speeding up the
W-SIRTmethod is investigated.

Using theASTRA toolbox, 450 forward projections of the voxelmodel were obtained over 360° by applying
the forward projection operators. In the projection geometry, a conical x-ray beamwas used of which the angle is
automatically set by ASTRA to cover the full extent of the detector. The detector was chosen to have 2048 pixels
in the t -dimension and 700 pixels in the v-dimension. Gaussian noise and blurwere added to the projections, as
it was shown in our previous work that this is in good agreementwith the noise and blur characteristics of our
real detectors (Sanctorum et al 2020a). The geometry parameters in the simulations, found in table 1, were
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chosen to correspond to the physical parameters of the set-up. To simulate the detector offset, the projection
datawas truncated in the t -dimension. First, 800 pixels were truncated to simulate an overlap region of 448
pixels (or 63.9mm). Then, 1000 pixels were truncated, resulting in an overlap region of 48 pixels (or 6.8mm).
The overlap region is different in size, but the size of the FOV remains the same (292mm). To examine the
difference between the convergence rate using a centered detector and an offset-positioned detector,
reconstructions are alsomade using the full, non-truncated projection data. For the assessment of themethods,
only the central slice was reconstructed.

2.4. Image acquisition
The radiographswere recorded using the stereoscopic 3D2YMOX (3DDYnamicMOrphology using x-rays)
imaging system (Sanctorum et al 2019) (figure 2). The recorded images consist of 2048 pixels×2048 pixels
covering a FOVof 292mm×292mm (pixel size» 0.143mm). To rotate the samples, a custom-made rotation
stagewas used. A frequency-controlled asynchronousmotor, equippedwith a factor 40 gearbox, allows the top
platform tomake a complete revolution in∼2 s, duringwhich the projection data is continuously recordedwith

Figure 2.The stereoscopic 3D2YMOX system. The x-ray sources are attached to ceiling gantries, whereas theXRIIs aremounted on
hydraulic trolleys. In themiddle, the rotation stage is shown. The height of the rotation stage is provided to indicate the dimensions of
the set-up.

Table 1. Simulation parameters.

Phantom SRD (mm) DRD (mm) 2 T (mm) Np Nt Nv

Shepp–Logan 1770 230 63.9 450 2048 700

Shepp–Logan 1770 230 6.8 450 2048 700

The distances from the source to the rotation axis and from the detector to the rotation axis are

denoted as SRD andDRD, respectively. Thewidth of the overlap region is defined as 2T (see
figure 2). For each set dataset, 450 projections (Np)were sampled over 360°. The number of

detector pixels in both dimensions is given by Nt and N ,v respectively.

Figure 3.Used study objects. (a) LEGOphantom. (b)PMMAphantom containing PVC tubes. (c) Frozen rabbit specimen.
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a shutter time of 0.5ms. As the 3D2YMOX system is highlymodular (all components can be translated and
rotated independently), there is a continuous range of possible detector offset, but everymodification of the set-
up requires a calibration of the system’s geometry, for which amethod developed byNguyen et alwas applied
(Nguyen et al 2021). Since the images are recorded using x-ray image intensifiers (XRIIs), geometric distortion is
present in every frame, deteriorating the accuracy of the geometry calibration and the quality of the tomographic
reconstruction. Amethod developed earlier by Sanctorum et alwas used to remove the distortion from the
images prior to geometry calibration and subsequent reconstruction (Sanctorum et al 2020a, 2020b).

2.5. Experiments
2.5.1. LEGOphantom
Thefirst experiments were carried out using a test phantombuilt of LEGO®bricks (figure 3(a)), with dimensions
of 183mm´128mm´76mm. The phantomwas built tofit within the FOVof a centered detector. This way,
the reconstructions obtainedwith an offset-detector and theW-SIRT algorithm can be compared to those of a
regular SIRT reconstruction (centered detector). To validate our proposedmethod for different sizes of overlap
regions, the detector wasmanually set in four different offset positions, varying between 0 and 100mm in steps
of approximately 25mm.

After eachmanipulation of the geometry, it is indispensable to record a dataset to calibrate the geometry of
the set-up. For geometry calibration, amethod developed byNguyen et al is used (Nguyen et al 2020, 2021). The
amount of detector shift can be extracted from the calibration results, whichwill be used to calculate the
resulting effective FOV.

The purpose of the LEGOphantom ismainly to examine the difference in convergence rate, reconstruction
quality, and computation time for a centered reconstruction and reconstructions obtainedwith different
detector offset values. The phantom contains three gear-shaped objects at different heights and different
distances from the center of the phantom that have homogeneous regions suitable for CNR calculations. Besides
the quantitative analysis using theCNR and the C ,RMS the reconstructed volumeswill be compared visually. In
these analyses, theW-SIRT algorithm is compared to theW-SART algorithm. Table 2 shows the conditions
underwhich the radiographs of the phantomwere recorded. The phantomwas positioned on the rotation stage
resting on its largest surfacewith the studs of the LEGObricks pointing upwards, as infigure 3(a).

2.5.2. PVC tube phantom
To validate themethod on a sample of which the size exceeds thewidth of the detector, a phantom containing
PVC tubes was built, which is shown infigure 3(b). The PVC tubes aremounted in a case of PMMA (thickness of
5mm) ofwhich the outer dimensions are 380mm´150mm´150mm.The long PVC tubes have lengths of
370mm,whereas the short tubes have lengths of 140mm.All tubes have an outer diameter of 31.7mm, but the
gray tubes are hollowwhereas the red tubes are solid. The PMMAcase has a removable lid, so the phantom can
befilledwith, for example, water. To record the projections, the phantomwas placed on the rotation stage with
the three short horizontal tubes parallel to the floor. First, the phantomwas imaged in an empty state (filledwith
air), then it was imaged again filledwithwater. The imaging conditions can be found in table 2.

Table 2.Experimental scanning information.

LEGO

phantom

Tube

phantom

(air)

Tube

phantom

(water) Rabbit

SRD (mm) 1248 1762 1762 1762

DRD (mm) 237 230 230 230

I (mA) 40 40 10 44

V (kV) 60 70 86 70

Np 450 450 450 450

qD (°) 0.8 0.8 0.8 0.8

Dt (ms) 0.5 0.5 0.5 0.5

For each of the conducted experiments, the data acquisition parameters are

presented. The distance from the source to the rotation axis (SRD), as well as
the distance from the detector to the rotation axis (DRD) are given. The tube
current (I) and voltage (V ) are also shown. The number of recorded

projections, the angular interval between the projections, and the shutter time

are denoted as N ,p qD , and Dt , respectively.

6

Phys.Med. Biol. 66 (2021) 165008 JG Sanctorum et al



2.5.3. Rabbit
To validate our proposedmethod on a biological sample of which the dimensions are too large to be imagedwith
a centered detector, we recorded data of a rabbit specimen. The specimenwas borrowed from the veterinary
sciences department of theUniversity of Antwerp, where it was sacrificed earlier for other research purposes
unrelated to this work andwas delivered to us in a frozen state. As shown infigure 3(c), the rabbit had a
horizontal span ofmore than 40 cm. The effective span of the rabbit as projected on the detector was larger than
45 cmdue to themagnification factor of 1.13 (see table 2 for scanning information), vastly exceeding the physical
size of our detector (292mm). During the acquisition, the rabbit was positioned on the rotation stage on its side,
as viewed fromabove infigure 3(c) (rotation axis through itsflanks). The imaging parameters are found in
table 2.

3. Results

Prior to showing the results, it needs to bementioned that numerical analyses, such asCNR and contrast
calculations were carried out on the raw output values of the reconstructed volume, without any postprocessing.
For display purposes, for example in graphs or reconstructed slices, the valueswere scaled to integer values
between 0 and 255.

3.1. Simulation results
In the simulations, the reconstructed central slice had a size of 1440 voxels´780 voxels with a voxel size of
0.143mm. First, the convergence rate of the proposedW-SIRTmethodwas examined by calculating the RN
after each iteration. This was also done for theW-SART andW-SART-TVmethods. Infigure 4, the convergence
curves are shown for 350 iterations of eachmethod (panel (a)) for a centered detector and for an overlap region
of =T2 63.9mm. Panel (b) shows the RNof the last 150 iterations to increase visibility.

It is shown in panel (a) that for a centered detector, the SIRT and SART algorithms (both notweighted)
converge at roughly the same rate during the early iterations.However, during the later iterations, it is seen that
the SIRT algorithm converges faster and that the convergence curve ismore stable.When a laterally shifted
detector is used, it is apparent that theW-SIRT algorithm converges slower than in the case of a centered
detector, and the same is true for theW-SARTmethod in comparison to the centered SARTmethod. By
including TVdenoising in theW-SARTmethod, the convergence curve of centered SART is approximated in
the later iterations. TheW-SIRT algorithm catches upwith the centered SART algorithm after approximately 50
iterations and it is shown in panel (b) that theW-SIRTmethod converges faster than de SART variants.

It is undesirable for the SIRT algorithm to converge slower in case the detector is put in an offset position, as
this implies thatmore iterations are necessary to reach convergence, which is time-consuming.We therefore
aim to accelerate the convergence rate of theW-SIRT algorithmby incorporating the relaxation parameter a of
equation (3) in (5):

a= + -+x x CA RW p Ax . 9k k T k1 ( ) ( )( ) ( ) ( )

It was previously shown (Gregor andBenson 2008) that the convergence rate of the SIRT algorithm could be
increased by choosing the value of a to lie between 1 and 2. In thework ofGregor andBenson it is stated that a

value of a =
+ 
2

1
with   0.005 could double the rate of convergence, given it would lead to a correct

Figure 4. (a)Convergence curves for the iterativemethods under consideration for a detector overlap of =T2 63.9mmand for a
centered detector (indicated by theword ‘center’ in the legend). On the curves, the number of iterations for which convergence can be
claimed (based on the proposed criterion) aremarkedwith a ‘o’ and a ‘*’ symbol for the SIRT and SARTmethods, respectively. The
scale of the vertical axis is logarithmic. (b) Final 150 iterations of the curves in (a) to illustrate the differences invisible in (a).
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bound on theminimumeigenvalue of thematrix CA RA.T Therefore, we have chosen the value of  = 0.005,
resulting in a= 1.99 in equation (9). Theweighted SIRTmethod corresponding to equation (9)with the given a
will be referred to as acceleratedW-SIRT, or aW-SIRT, fromnowon.On both panels offigure 4, it is shown that
the aW-SIRT algorithm indeed converges faster than the regularW-SIRT algorithm and that its convergence
curve approximates the one of the centered, not-weighted SIRT algorithm.

Based on our data, a suitable criterion to claim convergencewould be to state that the RNdrops below 10%
of its original value while the relative difference between two subsequent RNs, calculated asD = --

-
RNi

RN RN

RN
i i

i

1

1

with i the iteration number, drops below 0.1%. These convergence points are indicated infigure 4 using ‘o’ and
‘
*
’ symbols for the SIRT and SARTmethods, respectively. In table 3, the exact number of iterations Nit for which

convergence is reached is shown for each of themethods, alongwith the average time per iterationDt ,it for the
curves infigure 4.

From table 3, it would seem that the SARTmethods converge at a faster rate than the SIRTmethods.
However,figure 4 shows that on the points where convergence could be claimed based on the criterion, the
SARTmethods actually have not converged yet. In the SARTmethods, it is possible that a single iteration does
not bringmuch new information, and therefore the RNbarely alters, resulting in a smallDRN .i This does not
occur for the SIRTmethods, and the convergence claim ismore reliable. Therefore, we have chosen to run the
same number of iterations in the SARTmethods as in theW-SIRTmethod, as these curves are themost alike.
Table 3 additionally shows that the time per iteration is generally smaller when using SART orW-SART, but the
additional TV denoising tremendously increases the computation time.

Infigure 5, central slice reconstructions of the 3D Shepp–Logan phantomare shown for the different
reconstructionmethods, being pre-convolutional FDK and the SIRT and SART variants described earlier. The
number of iterations for eachmethodwas chosen based on the convergence criterion (table 3). In the first
column, the typical artifacts related to an off-centered detector are shown. These have the formof bright circular
artifacts,marking the overlap region.However, as is shown in the ROI images below the full slices, these artifacts
may also introduce streak artifacts outside of the overlap region. It is shown that all of the proposedweighted
reconstructionmethods successfully remove the artifacts. The only exception is the pre-convolutional FDK
method in case of a small detector overlap, where an artifact remains in the center (white arrow in bottom row).
This was expected, as it was already shown in early literature that pre-convolutional FDK introduces artifacts in
the case of a small redundancy region (Cho et al 1996).

It is shown that, in the case of a centered detector, the FDK algorithmprovides the best reconstruction in
terms of RMSE and speed, but the SIRT algorithmprovides the best CNR. The SART reconstruction displays
some non-uniformity (mostly in the background) and has aCNR comparable to the FDK reconstruction, but it
is faster than the SIRT algorithm for the same number of iterations.When the detector is laterally shifted, the
CNRdrops and the RMSE rises for theW-FDKmethod. The rise of RMSE is due to the fact that the raw output
of the FDK algorithm is globally darker than the original phantom,which is not the case for the iterative
methods. The SARTmethods provide a higher CNR and a lower RMSE than FDK, showing that the SART
methods can deliver better reconstructions at the cost of a longer computation time, which ismost apparent
using theW-SART-TVmethod. The TVdenoising step results in a better CNR, but a slightly lower RMSE at the
cost of a steep increase of the computation time. TheW-SIRTmethod is slightly slower than theW-SART
method, but theCNR is vastly increased and the RMSE is slightly lower. The aW-SIRTmethod is the fastest of
the proposedweighting schemes and provides anRMSEwhich approximates the RMSEof a centered SIRT
reconstruction, at the cost of a slightly lowerCNR as compared to theW-SIRT algorithm. For the iterative
methods, theCNR andRMSE seem to be unaffected by the amount of detector overlap.

Visually, both the SIRT and SARTmethods provide decent reconstructions, but the SIRTmethods seem to
suffer less fromnoise, as is also shown infigure 6. This figure shows line profiles of vertical cross-sections at the

Table 3.Convergence overview.

Method Nit Dt sit ( )

Centered SART 164 0.102

W-SART 125 0.102

W-SART-TV 112 0.266

Centered SIRT 203 0.128

W-SIRT 316 0.129

aW-SIRT 201 0.130

Number of iterations Nit and average

time per iterationDtit for the curves

shown infigure 4.
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center of the reconstructed slices (panels (a)–(c)) and horizontal cross-sections through the center of the three
elliptical shapes at the bottomof the slices (panels (d)–(f)). For theweighted reconstructions, only the line
profiles of the reconstructions forwhich =T2 6.8mmare shown, as the curves are nearly identical to those of

=T2 63.9mm.By comparing panels (a) to (c), it is clear that the SIRT reconstructions are superior in terms of
noise suppression, followed by the SART reconstructions. For theweighted FDKmethod, it is shown that the
gray values lie substantially lower than those of the original phantom and centered reconstruction. Also, the dip

Figure 5.Central slice reconstructions using the different reconstructionmethods under consideration (different columns) for a
centered detecter (first row), an overlap region of =T2 63.9mm (second row), and an overlap region of =T2 6.8mm (bottom row).
The first column shows the phantomand typical artifacts that occurwhen noweighting is applied in an offset geometry. On the
original phantom, twowhite squares of equal size indicate the regions used forCNR calculations. On each panel, theCNR, RMSEwith
the original phantom slice, total reconstruction time and number of iterations are indicated. Below each panel, anROI of the three
elliptical shapes in the bottomof the slice are shown to highlight details. Thewhite arrow in the bottom row indicates remaining
artifacts when using pre-convolutional FDK for small overlap sizes. The grayscale in the top right applies to all panels.
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in the gray values caused by the unsuccessful removal of the central artifact is visible, as indicated using a black
arrow. In panels (a) and (b) it is hard to discriminate between the line profiles of the differentmethods, but
differences aremore noticeable in panels (d) and (e), although the line profiles for the three SIRTmethods show
no considerable differences. The line profiles in panel (e) show that theW-SIRT-TVmethod indeed reduces the
noise, resulting in an increase of CNR. In panel (f) it is again shown that theweighted FDK results in overall
lower gray values, and the three peaks of the elliptical shapes are nearly unidentifiable due to the noise.

3.2. LEGO test phantom
As formerly described, the detector wasmanually shifted over distances of approximately 25mm. Subsequent to
each lateral shift, a calibration dataset, as well as a dataset of the LEGOphantom,was recorded. After calibration,

Figure 6.Vertical cross-sections at the center of the reconstructed central slice for (a) the SIRTmethods, (b) the SARTmethods, and
(c) the FDKmethods. Panels (d)–(f) showhorizontal cross-sections through the center of the three elliptical shapes at the bottomof
the slice in the same order. The black arrow in panel (c) highlights the redundancy artifact that remained using FDK for a small
redundancy region. The legends in the top panels also apply to the corresponding panels below.

Figure 7.Convergence curves for each of the values for the lateral detector shifts D = 26.6, 45.5, 63.5, 89.7{ }mmand the different
reconstructionmethods. In each panel, the inset shows the RN values for the last 100 iterations to increase the visibility of the
difference between the curves. The legend applies to all panels.
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the different detector shifts were found to beD = 26.6, 45.5, 63.5, 89.7{ }mm. For each of the lateral shift
values, the datasets were reconstructed usingW-SART,W-SIRT, and aW-SIRT in a reconstruction volume of
650 voxels´500 voxels´800 voxels with a voxel size of 0.285mm.The convergence rates of the different
methodswere examined first.

Figure 7 shows that, as predicted by the simulations, the aW-SIRT algorithmhas a faster convergence rate as
compared toW-SIRT due to the relaxation parameter. The convergence curves ofW-SIRT andW-SART are
quite similar during the first few iterations, but it is clear that later on, theW-SIRT algorithm convergesmore
stably.While theW-SIRT algorithm converges to the same value for the RN as aW-SIRT (only slower) after
about 200 iterations, the same is not true for theW-SART algorithm, as seen in the insets. The similarity of the

Figure 8.Horizontal reconstructed slices of the LEGOphantomat heights h1 =−9.98mm (left column), h2 = 8.85mm (middle
column), and h3 = 27.95mm (right column) relative to the center of the reconstructed volume for each of the reconstruction
algorithms under consideration (centered SIRT,W-SART,W-SIRT, and aW-SIRT). Below each full panel, ROIs are shown that are
indicated in the top rowusingwhite rectangles and numbers 1–3. ROIs 1 and 2 containwhite rectangles of 10 pixels× 50 pixels to
indicate the image regions used for CNR calculations. The gray values in all panels arewindowed between 0 and 255.
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curves in the different panels indicates that the convergence rates of themethods are not affected by the amount
of lateral detector shift.

Next, figure 8 shows horizontal reconstructed slices of the LEGOphantomof different heights (h1=
−9.98mm, h2 = 8.85mm, and h3 = 27.95mm relative to the center of the reconstructed volume) for a centered
reconstruction using 200 iterations of SIRT and for reconstructions obtained using a shifted detector (D=
89.7mm) using 200 iterations ofW-SART,W-SIRT and aW-SIRT. Slices for other values of the detector shift are
not shown as they appear nearly identical. It is observed through visual inspection that for the shifted
reconstructions, no circular artifact is present coaxial to the rotation axis, which implies that theweighting
scheme indeed corrects for data redundancy and edge truncation in the reconstruction algorithms under

Figure 9.Central regions of slices at h1 andD= 26.6mmusing 100 and 200 iterations of centered SIRT,W-SART,W-SIRT, and aW-
SIRT. The gray values are windowed between 0 and 255.

Table 4.Experimental results using the LEGOphantom.

Nit D (mm) FOV (mm) Method CNR1 CNR2 CNR3 á ñCNR CRMS Dt (s)

200 0 292.0 SIRT 17.88 16.76 12.56 15.74 8.35 1814.7

26.6 345.2 W-SART 12.11 13.33 6.44 10.63 7.48 1437.7

W-SIRT 19.82 15.92 15.37 17.04 7.12 2260.1

aW-SIRT 13.56 13.42 9.77 12.25 7.94 2075.6

45.5 383.0 W-SART 12.94 18.91 8.85 13.57 7.27 1658.5

W-SIRT 21.53 25.41 14.88 20.61 6.98 1990.2

aW-SIRT 13.71 20.30 10.21 14.74 7.78 1990.6

63.5 419.0 W-SART 14.24 15.38 10.14 13.25 7.32 1730.7

W-SIRT 21.48 19.39 20.90 20.59 7.09 1967.6

aW-SIRT 14.01 15.43 13.08 14.17 7.87 1974.3

89.7 471.4 W-SART 9.96 14.30 9.30 11.18 7.32 1883.8

W-SIRT 15.29 19.83 19.25 18.13 7.20 1923.8

aW-SIRT 10.77 14.77 12.26 12.60 7.93 1956.0

100 0 292.0 SIRT 27.20 21.11 19.17 22.49 7.55 1493.0

26.6 345.2 W-SART 13.40 16.52 9.47 13.13 6.63 1196.0

W-SIRT 24.82 20.18 22.88 22.62 6.27 1658.9

aW-SIRT 19.86 15.93 15.41 17.07 7.12 1661.1

45.5 383.0 W-SART 15.26 25.72 10.21 17.06 6.43 1209.7

W-SIRT 34.37 33.83 20.96 29.72 6.14 1620.8

aW-SIRT 21.59 25.43 14.92 20.65 6.98 1621.4

63.5 419.0 W-SART 16.87 18.62 13.21 16.23 6.49 1218.6

W-SIRT 35.27 25.83 33.92 31.67 6.25 1583.4

aW-SIRT 21.54 19.41 20.97 20.64 7.09 1583.5

89.7 471.4 W-SART 12.49 17.44 13.33 14.41 6.51 1247.7

W-SIRT 22.59 27.57 29.67 26.61 6.37 1523.7

aW-SIRT 15.31 19.86 19.31 18.16 7.19 1548.7

For each value of lateral detector shiftD (and correspondingwidth of the FOV), the value of theCNRs is shown alongwith the
total reconstruction time. CNRi corresponds to theCNR calculated in the slice at h ,i and the average CNRover the different

heights is given as á ñCNR .The value of CRMS is calculated over the full reconstructed volume. The number of iterations is given

by N .it
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consideration. By comparing the edges of the LEGObricks close to the center of the volume to those closer to the
edge of the object, it is seen that the edges away from the center becomemore blurry. This is rotation blur caused
by recording projections under continuous rotation and is unrelated to the proposed reconstruction algorithm
orweighting scheme. TheROIs shown below each panel indicate that in general, the reconstruction obtained
withW-SIRT is slightlymore blurry than the one obtainedwithW-SART, but it is also less noisy. The
reconstruction obtainedwith aW-SIRT seems sharper than those obtainedwithW-SART andW-SIRT, but
appears to be noisier than theW-SIRT reconstruction. To quantitatively assess the contrast in the different
reconstructed volumes, the CNRwas calculated in the three gear-shaped objects that are located on the three
different heights (h ,1 h ,2 and h3). In ROI 1 andROI 2 of the first row,white rectangles of 10 voxels´50 voxels
indicate the regions that were used for CNR calculations. The calculationswere performed for each of the
reconstruction algorithms and each value for detector shift, as well for the centered reconstruction (using 200
iterations of regular SIRT). In table 4, the results of the CNR calculations are shown, alongwith information on
the computation times of the algorithms and the total effective FOVobtained by applying the lateral detector
shift, which is calculated as the sumof the truewidth of the detector d and twice the shift valueD.Apart from the
CNR, also the RMS contrast, calculated over the full reconstructed volume using equation (6), is shown. In the
table, the same results are shown for 100 iterations.

Table 4 shows that, in general, the average CNR is decreasedwhen an offset geometry is used. This is
probably caused by the detector recording less rays that pass through the object andmore background rays (in
the case of the LEGOphantom), resulting in less recorded signal, whichwould increase the noise. However, this
does not hold for theW-SIRTmethod, as theCNR appears to be higher as compared to the centered
reconstruction for the same number of iterations. This is understood by considering that theW-SIRT algorithm
converges slower than the centered SIRT algorithm and thus the fine details, such as noise, are only
reconstructed in later iterations. Therefore, theW-SIRT is expected to producemore homogeneous regions in
the signal and the background, resulting in a higher CNR. This does notmean that the contrast itself is better (see
figure 9). By comparing the average CNRvalues ofW-SART,W-SIRT, and aW-SIRT, those ofW-SART are
found to be lower than those ofW-SIRT and aW-SIRT, probably because SART is inherentlymore sensitive to
noise (see convergence curves). Based on the obtained values for the C ,RMS there is a loss of contrast when the
detector is shifted laterally for the same number of iterations, regardless of the reconstructionmethod used.
However, the contrast in the aW-SIRT reconstructions is the greatest, followed byW-SART andW-SIRT for the
same number of iterations. It is also noticed that the CNR and CRMS values for theW-SIRT reconstructions using
200 iterations are very similar to those of the aW-SIRT reconstructions using only 100 iterations, regardless of
the detector shift. Thismay imply that the application of the relaxation parameter approximately doubles the
convergence rate. The reconstruction times ofW-SART are generally shorter than those ofW-SIRT and aW-
SIRT, but seem to increase with increasing detector shift. This is understood by the fact thatW-SART, in
contrast toW-SIRT and aW-SIRT, requires the projection data to be paddedwith zeros outside the redundancy
regionwhere data is non-existent. This implies that the size of the projection data grows in size as the detector
shift is increased, resulting in the rise ofmemory usage. TheW-SARTmethodwas also appliedwithout padding
the projection data, but this resulted in uncorrected redundancy artifacts (not shown in this work), while
W-SIRT and aW-SIRT also produce redundancy-artifact-free reconstructionwithout data padding. The
reconstruction times ofW-SIRT and aW-SIRT are similar, but seem to slightly decrease by increasing the
detector shift. This is quite remarkable, as the only difference between the datasets are the gray values of the
projection data and the values in thematrix W .Apossible explanation for this is the fact that, for a larger
detector offset, the projection data containsmore background pixels, which can assume the value of zero, and
thematrixW containsmore values that are equal to one instead of decimal numbers between zero and one. This
might bemore efficient in the calculations involved, althoughwe do not claim this is the reasonwhy.

Figure 9 shows central regions of the reconstructed slice at h1withD= 26.6mm for a centered
reconstruction using 100 or 200 iterations of SIRT and shifted reconstructions using 100 or 200 iterations of
W-SART,W-SIRT, and aW-SIRT. Comparing the regions for the same number of iterations shows that,
visually, theW-SART andW-SIRT algorithms produce slices with decreased contrast (mostlyW-SIRT), but the
W-SART reconstruction seems noisier. The slices reconstructed using aW-SIRT visually resemble the slices of
the centered detector themost and thereforemay bemore favorable. The visual quality of the centered
reconstruction for 100 iterations is very similar to theW-SIRT and aW-SIRT iterations using 200 and 100
iterations, respectively. These visual observations are in agreement with the CNR and CRMS values reported in
table 4.

3.3. Large objects
After validation of the proposedmethod on the LEGOphantom (whichwas sufficiently small to be imagedwith
a centered detector), themethodwas tested on two samples for which the detector offsetmethod is required. The
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first large sample is the PMMAcontainer with PVC tubes, the second is the frozen rabbit specimen (see
figures 3(b) and (c)). The phantom containing PVC tubes in a PMMAcasewas imaged twice: the first time it was
empty (orfilledwith air) and the second time it was filledwithwater. The lateral shift of the detector was equal to
111.9mmaccording to the calibration, yielding an effective FOVof 515.8mm,which is a gain of 76.6%
compared to the FOVof the centered detector (292mm). The phantomwas reconstructed in a volume of 800
voxels´800 voxels´1450 voxels with a voxel size of 0.285mm. Figure 10(a) shows the convergence curves for
the reconstruction of the PMMAphantom in an empty state. The curves for thewater-filled PMMaphantom are
not shown as they are very similar. As is the case for the LEGOphantom, the aW-SIRT algorithmhas the fastest
convergence rate, and the curve of theW-SART algorithm ismore unstable.

Horizontal (view along the rotation axis) and vertical (view perpendicular to the rotation axis) slices of the
reconstructed phantom are shown infigure 11. As the LEGOphantom experiments showed that the
reconstructions using 200 iterations ofW-SIRT and 100 iterations of aW-SIRTwere nearly identical, only slices

Figure 11.Reconstructed slices of the PVC tube phantomfilledwith air (top two rows) andfilledwithwater (bottom two rows)
obtained using 100 iterations of regular SIRTwithout applying redundancyweighting (first column), using 200 iterations ofW-SART
(second column), and using 100 iterations of aW-SIRT (last column). The first and third row showhorizontal slices, whereas the
second and fourth row show vertical slices.White arrows on the slices in the left column indicate artifacts and thewhite squares of 50
voxels´50 voxels indicate the regions that were used for CNR calculations (the regions in the signal are labeled using the numbers
1–3). The scale bar in the topmiddle panel and the grayscale below apply to all panels.

Figure 10.Convergence curves of (a) the empty PMMAphantomand (b) the rabbit specimen for 200 iterations. The convergence
curves of thewater-filled PMMAphantom are not shown as the curves are very similar. In both panels, the inset shows the curves for
the last 100 iterations to highlight differences between themethods.
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of 100 iterations of aW-SIRT are shown. The number of iterations of theW-SART reconstructionwas 200. In
the left column, artifacts related to positioning the detector in an offset position can be clearly seen, as no
redundancyweightingwas applied. These artifacts are observed in the formof a bright circular artifact coaxial to
the rotation axis, causing additional shading artifacts as well (mostly observed in the lower two panels of the left
column). UsingW-SARTor aW-SIRT, these artifacts are successfully removed. Visual inspection of the slices
suggests that the slices obtained using aW-SIRT are slightly less noisy. Quantitativemeasures such asCNR and
CRMS can be found in table 5.

Infigure 11, it is important to notice that in the bottom row,when the phantom isfilledwithwater, the
contrast for the long tube disappears near the center of the volume. This is not the casewhen the phantom is
filledwith air (second row). The disappearance of this contrast is thus not related to positioning the detector in
an offset position but is due to the limited dynamic range of the XRII. The shorter tubes suffer less from this
contrast loss, showing that shapes of large aspect ratio aremore sensitive to this artifact. As animals, for example,
usually have such aspect ratio, these artifacts are important to consider. Nevertheless, this experiment proves the
possibility of reconstructing an object of which thewidth exceeds thewidth of the detector by positioning the
detector in an offset position and by using the aW-SIRT algorithm.

Table 5 shows that, in case the phantom is empty, the aW-SIRT provides a reconstructionwith higher CNR
as compared toW-SART.When the phantom isfilledwithwater, the differences are smaller. The differences in
CRMS are not in favor of onemethod. It is, however, important to notice that the results obtained using aW-SIRT

Figure 12.Vertical slices showing different anatomical structures of the rabbit specimen, namely the pelvis (left column), the spine
and the ribs (middle column), and the head and the teeth (right column). The top rowshows the slices obtainedwith 200 iterations of
W-SART,whereas the bottom rowshows those obtainedusing 100 iterations of aW-SIRT. In the top row, thewhite squares (20voxels´
20voxels) indicate regions in the tissue and the background thatwere used forCNRcalculations. The grayscale and 50mmscale bars
apply to their corresponding column.

Table 5.Experimental results using the PMMAphantom.

D (mm) FOV (mm) Method Nit CNR1 CNR2 CNR3 á ñCNR CRMS Dt (s)

111.9 515.8 E W-SART 200 29.78 22.27 23.82 25.29 3.54 8371.9

aW-SIRT 100 30.32 26.53 27.84 28.23 3.57 4761.6

W W-SART 200 8.17 13.63 16.31 12.70 3.76 8357.3

aW-SIRT 100 9.44 12.88 15.36 12.56 3.85 4734.3

In this table, the letters E andW indicatewhether the PMMAphantom is empty (or air-filled) orwater-filled, respectively. The different
CNR values correspond to the labeled regions infigure 11. Same symbols as in table 4 apply.
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only required 100 iterations at a time of~4800 s, whileW-SART required 200 iterations and a total computation
time of~8400 s.As theCNR and CRMS do not differmuch, the best choice would in this case be the aW-SIRT
algorithmdue to the (much) shorter computation time.

Finally, to demonstrate our proposedmethod on a biological sample, a rabbit specimenwas scannedwith
parameters that can be found in table 2. During this experiment, the detector was shifted overD= 110mm,
yielding a redundancy region of T2 = 72mmand an effective FOVof 512mm.The reconstructed volume had a
size of 1200 voxels´500 voxels´1450 voxels with a voxel size of 0.285mm.Convergence curves of the different
algorithms can be found infigure 10(b). Again, the aW-SIRT algorithm is found to converge at the fastest rate,
while the convergence curve of theW-SART algorithmdisplays instability. Infigure 12, ROIs of vertical slices
(parallel to the rotation axis) of the rabbit are shown, displaying the pelvis, the spine and ribs, and the head and
teeth. The slices were obtained using 200 iterations ofW-SART and 100 iterations of aW-SIRT. As the
experiments with the PMMAphantom already showed that bothmethodswould remove the redundancy
artifacts, slices of a non-weighted reconstruction are not shown.Visual inspection of the slices suggests that the
slices of the aW-SIRT reconstruction are slightly less noisy (mostly visible in the slice containing the pelvis). The
slice containing the spine and ribs displays a slightly better contrast in the aW-SIRT reconstruction. The teeth
seem to bemore distinguishable in the aW-SIRT reconstruction, and the edge at themouth of the rabbit seems
sharper. Some ring artifacts are still visible when using theW-SARTor aW-SIRTmethod, which are visible as
subtle black vertical streak in the slice showing the pelvis. These originated from remaining dark-field artifacts
and are unrelated to the proposedmethod. For these reconstructions, three values for theCNRwere calculated
in the soft tissue (see white squares in the top rowoffigure 12) and the CRMS values for the total volumeswere
calculated and reported in table 6:

Table 6 shows that in general, the CNRvalues for the aW-SIRT reconstruction are higher, which is in
agreementwith the visual inspection. However, the difference in CRMS is negligible. Again, only 100 iterations of
the aW-SIRT algorithmwere used to obtain these results, yielding a shorter total computation time as compared
toW-SART.

As one of the goals of this work is to propose amethod to increase the FOV for tomographic reconstruction,
we demonstrate the FOVgain in the extended reconstructed volumes, by providing images of 3D renderings of
the rabbit and the PMMAphantom (empty andwater-filled)usingmaximum intensity projection. The images
can be found in figure 13. The reconstructions were obtained using the aW-SIRT algorithm.

Figure 13. Side and top views (top and bottom row) of 3D-renderings usingmaximum intensity projection. (a)Rabbit specimen.
(b)Empty PVC tube phantom. (c)Water-filled PVC tube phantom.

Table 6.Experimental results obtained using the rabbit specimen.

D (mm) FOV (mm) Method Nit CNR1 CNR2 CNR3 á ñCNR CRMS Dt (s)

110 512 W-SART 200 23.40 27.25 27.32 29.79 4.14 7621.2

aW-SIRT 100 29.97 29.24 30.14 25.99 4.17 4414.8

The index of theCNRs reported in this table corresponds to the number of the column in figure 12. Same symbols as in table 5

apply.
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4.Discussion

The proposed redundancy weighting scheme implemented in the SIRT algorithm (W-SIRT)was first tested in
simulations using central slice reconstructions of 3D Shepp–Logan phantom. It was compared to the pre-
convolutional FDKmethod and theW-SART(-TV)method. The convergence curves (figure 4) readily showed
that, by positioning the detector off center and by applying the redundancy weighting scheme, the convergence
rate decreased. This was both true for SIRT and SART. A decrease of convergence rate is an undesirable side-
effect of themethod, andwould imply thatmore iterations are needed to obtain a converged reconstruction. To
this end, we introduced a relaxation parameter a in theW-SIRT scheme, resulting in the aW-SIRT algorithm.
Following thework ofGregor andBenson, the relaxation parameter awas chosen as 1.99. This turned out to be
a reasonable choice, as indeed the convergence ratewas increased and the convergence curve of a centered
detector was approximated.Whether the convergence rate of the aW-SIRT algorithm can be accelerated even
further is yet to be studied. Presumably, higher convergence rates can be achieved by using other SIRT-like
methods, such as the conjugate gradient least squares (CGLS)method or a Barzilai-Borwein approach.However,
this is beyond the scope of the current work.

Another important result obtained from the simulations is that theweighted SIRT and SART algorithms
performwell for both small and large detector shifts (Hansis et al 2010, Bian et al 2012), which is not the case for
pre-convolutional FDK.However, theW-SIRT and aW-SIRT algorithm seem to provide reconstructions with a
higher CNR and lower RMSE as compared to SART and SART-TV.Due to the high convergence rate of the aW-
SIRT algorithm, less iterations are necessary to reach convergence, resulting in a lower total computation time
thanW-SART, although the average computation time per iteration is shorter forW-SART. The benefits of
incorporating TVdenoising in theW-SART algorithm are limited, and the vast increase in computation time
deteriorates its usefulness for reconstructing large 3D volumes. Finally, we highlight the fact that, in the
simulations, the detector usedwas of the flat-panel type. This indicates that the proposedmethod applies toflat-
panel detectors as well, requiring no alterations, demonstrating the generality of themethod.

After conducting simulations, we have tested our proposedmethod using experimentally using different
study objects, eachwith their own purpose. Using the LEGOphantom, the convergence rate, image quality (in
terms of CNR and CRMS), and computation timewere assessed for the different reconstruction algorithms and
for different values of the detector offset. It was shown that the aW-SIRT algorithm indeed has the fastest
convergence rate due to the relaxation parameter, and that the convergence ofW-SIRT and aW-SIRT ismore
stable as compared toW-SART. This implies, as shown in table 4, that desired levels of CNR and CRMS can be
reached faster using aW-SIRT as opposed toW-SIRT orW-SART.Given the larger values for theCNR and the
CRMS of the aW-SIRT algorithm as compared to theW-SART algorithm, itmight be possible to obtain
reconstructions with the aW-SIRT algorithmof the same image quality as those obtainedwithW-SART, but
with a lower dose. Themethodswere not compared to FDK in the experiments due to the complex imaging
geometry, but the simulations also pointed out that higher CNRs could be obtained using iterativemethods
instead of FDK. The data in table 4 and theROIs shown infigure 9 are in favor of the aW-SIRT algorithm,
provided that the number of iterations is limited. For example, 100 iterations of the aW-SIRT algorithmwere
sufficient to obtain a reconstruction of similar quality using 200 reconstructions ofW-SIRT, while the visual
quality was similar to that of a centered reconstruction using 100 iterations of SIRT.

The general loss of CNR in the reconstructed slices using detector offset geometrywas reported earlier by
Mettivier et al in a phantom study in the field of breast CBCT (Mettivier et al 2012). However, it was also shown
in their work that by blocking the fraction of the beam thatwould irradiate the sample but would not be seen by
the detector (due to the offset position) before it reaches the sample, the amount of scatter and the dosewould
decrease. This resulted in a larger CNRper unit dose as compared to a centered detector. Collimation of the
‘unuseful’ part of the beamwas not applied in this work, but the combination of this half-beam collimation in
combinationwith aW-SIRT reconstruction yields interesting opportunities for dose reduction atfixed image
quality. This is, however, beyond the scope of the current work.

As seen infigure 9, the reconstructed slices of the LEGOphantom exhibited blurring artifacts near the
periphery of the reconstructed volume. These artifacts are unrelated to the detector offsetmethod as thesewere
also present in the case of a centered detector. Presumably, these artifacts are caused by continuously rotating the
samplewhile recording. In other experiments (not described in thismanuscript)wehave enlarged the rotation
periodwhile decreasing the shutter time to eliminate the angular integration, as was described elsewhere (Krebs
et al 2018), but the artifacts remain.We therefore believe that the blurring artifactsmight be due to scintillator
lag, as XRIIs are known to have lag times of the order ofmilliseconds (Wang andBlackburn 2000). As larger
objects (which are the aimof FOV enlargement techniques)will suffermore from these blurring artifacts, it is an
important aspect to consider in detector offset applications.

Using the PMMAphantom, theW-SART and aW-SIRT algorithms proved to be able to reconstruct large
objects free of artifacts related to positing the detector in an offset position.When the phantomwas filledwith
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water, it was observed that the contrast between the long PVC tube and thewater completely disappeared in the
center region of the volume. This did not occur in the shorter tubes, so it is clear that larger,more elongated
(high aspect ratio) structures will suffermore from contrast loss. The quantitative results shown in table 5were
slightlymore in favor of the aW-SIRT algorithm for the empty phantom, but the differences were less
pronouncedwhen the phantomwasfilled.However, the shorter computation time of the aW-SIRT is a great
advantage.

The reconstructed slices of the rabbit usingW-SART and aW-SIRTwere free of redundancy-related
artifacts. However, by inspecting the grayscales offigure 12, it can be noticed that the grayscale in themiddle
columnhas the smallest window. This implies that there is less overall contrast in that region as compared to the
slice of the head (much larger window). This loss of contrast is again due to the limited dynamic range of the
system (in combinationwith beam-hardening), as was also the cause for the loss of contrast in the long PVC
tube. The reported values of CNR and computation time, as well as the visual quality, are in favor of the aW-
SIRTmethod.Nearly identical results were obtained using 200 iterations ofW-SIRT, but the computation time
would then nearly double and exceed the computation time ofW-SART. It is therefore strongly advised to build
in a relaxation parameter when using aweighted SIRT approach.

Using the aW-SIRT (orW-SIRT) algorithm,we have shown that the effective FOVof the detector could be
increased bymore than 75% (see results of PMMAand rabbit sample), which is a considerable gain. In theory,
the effective detector width could be increased even further, but since our system is highlymodular and depends
on phantom-based calibration (Nguyen et al 2021), the extension of the FOV is experimentally limited. The
beads in the calibration phantom should be visible in each frame, so the size of the overlap region should be large
enough to contain the full phantom in every projection. Furthermore, such a flexible set-upwith large
components placed on trolleys and ceiling gantries ismodified by hand and can, therefore, only be aligned and
repositionedwith limited accuracy.

Thework presented in this paper can, for example, be of interest to researchers in thefield of small animal
biomechanics using stereoscopic x-ray systems. These systems provide information on animalmovement, but
morphological data of the specimen (such as bone segmentation)needs to be gathered in a separate CT-system,
which is rarely available in the same facility. In this work, not only dowe prove that such systems can be extended
to tomographic systems by introducing a rotation stage, but the size of the reconstruction volume can be also
enlarged tomeasure the size of the animal to be imaged. This, for example, paves theway for longitudinal studies
of young animal development, because locomotion data, as well asmorphological data, can be gathered in the
same set-up, circumventing the issue of animal transportation between facilities. The effective FOV (and thus
the diameter of the reconstruction volume) can be enlarged to a certain extent during the growth period of the
animal under consideration.However, we pointed out that continuous rotation of the sample and the limited
dynamic rangemight pose issues while imaging larger animals of high aspect ratio in such a system. This is of
course one of thefields that could benefit from this work, as the implementation of theW-SIRT and aW-SIRT
algorithms are notfield-specific.

It leaves us tomention that the proposedW-SIRT and aW-SIRTmethods are convenient to implement
using the ASTRA toolbox, given the fact that bothmethods are nearly purelymatrixmultiplications, except for
the creation ofmatrices A, R, C, andW . For large-scale datasets, thematrix A is too large to store explicitly, and
therefore, implementations based on explicitmatrix computations (as inMATLAB) cannot be used for (for
example) the SIRT algorithm.However, an interface was developed in the ASTRA toolbox (Bleichrodt et al 2016)
thatmakes use of the Spot toolbox, which allowswrapping external, GPU-based codes for linear operations in
MATLABobjects that can be treated asmatrices (van denBergh and Friedlander 2013). This implies that the
linear operations of the forward and backward projection can be defined and treated asmatrices in theMATLAB
interface, allowing for an intuitive implementation of the SIRT algorithm. Instructions on how to implement the
SIRT algorithmusing the ASTRAopTomo operator can be found in thework of Bleichrodt et al and can be
extended to theW-SIRT or aW-SIRT algorithmby incorporating the redundancyweightingmatrix W and
relaxation parameter a.TheASTRA toolbox is also available in Python, where similar syntax using
LinearOperator objects (equivalent to the Spot toolbox inMATLAB) allows an intuitive implementation of the
W-SIRT and aW-SIRT algorithms inmatrix form aswell.

5. Conclusion

In this work, we have presented the implementation of redundancy weighting in thewell-known SIRT
algorithm for detector offset tomography. The proposed algorithmswere validated in both simulations and
experiments, where it was shown that artifacts in the reconstructions related to placing the detector in a non-
centered positionwere successfully removed. To use the algorithm in a useful way, we have proven that the
inclusion of an additional relaxation parameter will accelerate the convergence. Using a relaxation parameter,
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higher CNR values could be obtained as compared to aweighted SART approach, at amuch shorter
computation time. As opposed to pre-convolutional FDK, the aW-SIRT algorithmperformswell for both small
and large detector shifts, resulting in amaximum increase of thewidth of theFOVof>75%. The aW-SIRT
algorithmhas proven to be a valuable technique, which is applicable in reconstruction problemswith flexible
and complex geometry. Although the results in this work are obtained usingXRIIs, themethod readily applies to
flat-panel detectors aswell.
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