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Abstract

An issue in computerized x-ray tomography is the limited size of available detectors relative to objects
of interest. A solution was provided in the past two decades by positioning the detector in a lateral
offset position, increasing the effective field of view (FOV) and thus the diameter of the reconstructed
volume. However, this introduced artifacts in the obtained reconstructions, caused by projection
truncation and data redundancy. These issues can be addressed by incorporating an additional data
weighting step in the reconstruction algorithms, known as redundancy weighting. In this work, we
present an implementation of redundancy weighting in the widely-used simultaneous iterative
reconstruction technique (SIRT), yielding the weighted SIRT (W-SIRT) method. The new technique
is validated using geometric phantoms and a rabbit specimen, by performing both simulation studies
as well as physical experiments. The experiments are carried out in a highly flexible stereoscopic x-ray
system equipped with x-ray image intensifiers (XRIIs). The simulations showed that higher values of
contrast-to-noise ratio could be obtained using the W-SIRT approach as compared to a weighted
implementation of the simultaneous algebraic reconstruction technique (SART). The convergence
rate of the W-SIRT was accelerated by including a relaxation parameter in the W-SIRT algorithm,
creating the aW-SIRT algorithm. This allowed to obtain the same results as the W-SIRT algorithm,
but at half the number of iterations, yielding a much shorter computation time. The aW-SIRT
algorithm has proven to perform well for both large as well as small regions of overlap, outperforming
the pre-convolutional Feldkamp—David—Kress algorithm for small overlap regions (or large detector
offsets). The experiments confirmed the results of the simulations. Using the aW-SIRT algorithm, the
effective FOV was increased by >75%, only limited by experimental constraints. Although an XRIT is
used in this work, the method readily applies to flat-panel detectors as well.

1. Introduction

An issue concerning digital x-ray detectors is their limited size, therefore limiting the size of objects that can be
imaged in radiography or for tomographic reconstruction. For radiography purposes, solutions were provided
in the form of semi-automatic (Dewaele et al 1999) or automatic (Wang et al 2018) x-ray image stitching
methods, allowing for an enlargement of the field of view (FOV). This solution is generally not applied to
tomographic reconstruction as a more adequate solution was found and developed during the past two decades.
It was already shown early on that the diameter of the reconstructed volume could be increased by positioning
the detector in a laterally shifted, non-centered position relative to the beam axis and tomographic rotation axis
(Cho etal 1996). In this way, each recorded projection contains data of at least half the width of the object under
consideration, and the effective imaging width is enlarged to a maximum of twice the physical width of the
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detector, depending on the amount of detector offset (Wang 2002). Yet, adjustments to convenient
reconstruction algorithms are necessary to remove the artifacts that are inherent to this detector offset method.

Positioning the detector in a laterally shifted position causes truncation of the image data, leading to high-
frequency components in Fourier space, which is one of the sources contributing to artifacts in the
reconstruction. This issue was identified and a solution was proposed by introducing an overlap region in the
scanning geometry (Cho et al 1996), as the overlap region allows for the smoothing of the projection data near
the truncated edge. This smoothing turns the edge gradient into a non-singular profile, eliminating the
corresponding high-frequency components in Fourier space. However, the overlap region also introduces data
redundancy, since parts of the object which lie in this region are imaged over the full 360°, whereas the other
parts are imaged over only 180°. Parker introduced a redundant data weighting scheme for short-scan fan-beam
CT (Parker 1982) and this concept was adopted to detector offset tomography to simultaneously correct for data
redundancy and truncation edge smoothing. In cone-beam CT, with horizontal rotation stages, data
redundancy only occurs in the horizontal midplane, and data redundancy in non-midplanes is assumed as an
approximation.

Drawing from the results of Parker, redundancy artifacts have been addressed by introducing a weighting
function in the reconstruction algorithms. The redundancy weighting function w (¢) generally depends on the
horizontal detector coordinate t and provides a smooth transition over the redundancy region between the
truncated edge and the uniquely imaged data. In general, the functions have a goniometric form and a zero-
gradient on the redundancy region boundary.

First, the redundancy weighting scheme was implemented in analytical methods, such as filtered
backprojection (FBP) and the Feldkamp—David—Kress (FDK) method (Feldkamp et al 1984). Cho et al (1996)
implemented a weighting scheme in the FDK algorithm in two different ways, before or after the convolution
step, referred to as pre-convolutional and post-convolutional weighting. It was shown through simulation
studies that a larger overlap region is required for pre-convolutional weighting, thus limiting the obtainable
diameter of the reconstructed volume. However, the post-convolutional weighting method is more complex as
it needs more preprocessing steps and it introduces more severe shading artifacts for small overlap regions. It
was therefore advised to use a moderate overlap region and pre-convolutional weighing, which was later also
used by Wang in simulation studies in the field of micro CT (Wang 2002). The results were in agreement with
those of Cho et al, and the method performed well for different overlap sizes, yielding a flexible way of resizing
the detector FOV. Using the weighting function proposed by Wang, Yu et al (2004) improved the numerical
properties of the reconstruction using a large detector offset (and thus a small overlap region) by converting the
weighted cone-beam projection data to equispaced parallel beam data. Then, FBP was used to obtain the
reconstructed volume, yielding a suppression of the shading artifacts as opposed to the FDK algorithm.
Vedantham et al (2020) examined the quantitative properties of three different weighting functions (Cho et al
1996, Wang 2002, Schifer et al 2011) in a pre-convolutional FDK scheme for cone-beam breast CT. It was found
that the results obtained using the different weighting functions were equivalent, which was to be expected as the
weighing functions, though having a different formulation, were nearly identical. A comparative study between
the use of redundancy weighting in FBP-type and backprojection-filtration-(BPF)-type methods was conducted
by Schifer et al (2011), which showed that BPF-type methods have the potential of providing better image
quality for small redundancy regions, while FBP-type methods were superior in the case of larger overlap
regions.

Besides analytical reconstruction methods, redundancy weighting schemes have also been implemented in
iterative algorithms. Hansis et al reported the use of redundancy weighting in two different iterative
reconstruction schemes: ordered subset simultaneous algebraic reconstruction technique (OS-SART) and
maximum likelihood ordered subset separable paraboloidal surrogates (ML OS-SPS) (Hansis et al 2010). Instead
of applying the sinusoidal weighting directly to the raw projections, it was applied to subsets of opposite
correction projection pairs that contribute to the update of the same voxel, where the correction term is
normalized on a voxel level. This way, the unit sum criterion of the weights (w (t) + w(—t) = 1) as stated by
Parker was circumvented, granting more freedom in the choice of w (). It was shown that, for a small
redundancy region, their approach (both SART and ML) yielded better results in terms of image uniformity (less
shading artifacts) as compared to FDK. Bian et al implemented the redundancy weighting scheme in two
optimization methods (ASD-WPOCS and EM) for sparse data tomography (Bian et al 2012). They found that
their ASD-WPOCS method produced superior results in terms of streak artifact mitigation and low-contrast
details as opposed to EM or FDK, opening up possibilities for dose reduction in detector offset CBCT. In the field
of micro CT, Sharma et al implemented the redundancy weighting in a hybrid reconstruction scheme to merge
the benefits of post-convolutional weighted FDK and weighted SART in terms of low- and high-frequency
contributions, suppressing shading artifacts in the reconstruction (Sharma et al 2014).

The standard reconstruction technique used in medical cone-beam systems is the FDK algorithm, due to its
speed and ease of use. However, the FDK algorithm only provides reliable results for perfectly circular projection
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Figure 1. (a) Schematic representation (top view) of a detector surface (D) being placed in a lateral offset position with respect to the
line connecting the position of the rotation axis (thick black dot) and the source (S), which is represented by a dashed line. The center
of the detector is depicted using a dotted line, and the offset value is denoted as A. The thick line represents the part of the cone in
which redundant data is recorded, corresponding to the horizontal detector coordinate t € [—T, T]. The distance between the
source and the detector surface equals R. (b) Front view of the detector surface introducing vertical detector coordinate v. The same
symbols as in (a) apply. The thick gray line shows the typical shape of the redundancy weighting function, varying smoothly from 0 to 1
from-TtoT.

tracks, and can therefore not be used in highly modular imaging systems (unless a specific modification to the
FDK algorithm is implemented for each change of geometry). Therefore, we propose the first implementation of
the redundancy weighting scheme in the simultaneous iterative reconstruction technique (SIRT), as it can
handle more complex geometries easily and is thus widely applicable. The performance of the weighted SIRT
(W-SIRT) algorithm is compared to the pre-convolutional weighted FDK algorithm and a weighted SART (W-
SART) implementation. We will consider the practical implications of using the detector offset method in a
highly modular set-up to estimate the maximum gain in effective detector width. The proposed algorithm will be
experimentally validated using physical geometric phantoms and a rabbit specimen.

2.Methods

2.1.Redundancy weighting

Positioning the detector in a lateral offset position causes the projections to be width-truncated and to contain
redundant data in the vicinity of the projected position of the rotation axis, which is schematically visualized in
figure 1. Both of these issues can be solved by introducing a redundancy weighting function w (¢) in the
reconstruction algorithm. Such a function should assume a value of one within the range of the detector outside
of the redundancy region and a value of zero out of the range of the detector. Within the redundancy region, the
function should provide a smooth transition from zero to one, where the unit sum of the weights is to be
respected (w(t) + w(—t) = 1). Atthe edges of the redundancy region, the derivative should be zero. A
function that meets these demands was proposed by Wang et al and will be used further on in this manuscript

(Wang2002):
0 , t< =T
. warctan(—)
Wwang(t) =32 sin 77}3 +1), - T<t<T. (1)
2arctan(i)
1 , t>T

In the former expression, t is the horizontal detector coordinate. The value T marks the redundancy region as
depicted in figure 1 and R represents the distance between the source and the detector surface. The typical shape
of the weighting function is shown in figure 1(b).

2.2. W-SIRT implementation
In general, algebraic reconstruction methods are based on solving the following linear system of equations:

Ax =p, 2)

where x € R"isavoxelized model of the volume of attenuation coefficients to be reconstructed, which is
transformed in a set of log-corrected projections p € R™ by the projection matrix A € R™*" that represents
the relative contributions of the rays to each pixel of the projections. A trivial way of solving this equation is by
inversion of the matrix A. However, the matrix A is generally not a square matrix, implying the non-existence of
its inverse. Moreover, the huge size and sparsity of the matrix A do not allow for matrix inversion, and therefore,
iterative methods are used to estimate the volume x by minimizing the difference between the recorded
projections p and the estimated projections Ax. One of such iterative methods, which solves a weighted least-
squares problem, is SIRT (Kak and Slaney 1988):
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The factor  is a relaxation parameter that equals 1 in the regular SIRT algorithm. This update scheme is often
presented in its matrix notation by defining x = [x;], p = [p,], A = [a;j], R = [r;],and C = [c;]:

xHD = x® + CATR(p — Ax®), (4)

where R and C are diagonal matrices containing the inverted row and column sums, r; = 1 / Z?’: | a;jand

=1 / oM, ajj, respectively. It can be proven that in this form, the convergence of the SIRT algorithm is
guaranteed (Gregor and Benson 2008). In this iterative scheme, the redundancy weighting can be implemented
prior to the backprojection step (multiplication by AT) by introducing the diagonal weighting matrix W, of
which the diagonal elements correspond to the correct weighting factors calculated using equation (1):

x*k+D = x® 4 CATRW (p — Ax®). ®)

We thus obtain the weighted SIRT, or W-SIRT, update scheme, which shall be evaluated using different study
objects. As the matrix W only contains values from zero to one on its diagonal (which are thus its eigenvalues),
convergence is still guaranteed. Reconstructions are carried out using the 1.9.0.dev11 version of the ASTRA
toolbox (van Aarle et al 2016) in a Matlab (Mathworks, Massachusetts, USA) environment (version 2019b). To
assess the convergence rate of the proposed method, the weighted residual norm (RN) is calculated after each
iteration. The norm is calculated as || Ax — p|[z with || Ax — p[[3 = (Ax — p)'R (Ax — p). The method will be
evaluated using some quantitative measures, such as root-mean-square contrast (or RMS contrast, Crps),
contrast-to-noise ratio (CNR), root-mean-squared error (RMSE), and total computation time.

The contrast in the reconstructed volumes will be assessed using the RMS contrast Cgyys, calculated as

s = | L3, — 57 ©)
RMS — _ i 5>
N

where N is the number of voxels in the reconstructed volume and % is the mean value of the reconstructed
volume. The CNR is calculated as the difference between mean gray values in equally-sized, homogeneous
regions in the signal and the noise divided by the standard deviation of that noise region:

CNR — Hsignal = Hnoise , %)

Ohnoise

wherein p stands for mean and o stands for standard deviation. In the simulations, RMSE between the
reconstructed volume and the original phantom is calculated as

N
RMSE = iZ(erec _ x]pha)z , (8)
NT

with N the total number of voxels in the reconstructed volume. The superscripts ‘rec’ and ‘pha’ stand for
‘reconstructed volume’ and ‘phantom’, respectively. Reconstruction times are measured by Matlab.

2.3.Simulations

Prior to physical experiments, the W-SIRT algorithm is compared to the pre-convolutional weighted FDK
algorithm and the weighted SART-TV (W-SART-TV) method presented earlier by Sharma et al referred to as
‘WIR’ in their work (Sharma et al 2014). Following the work of Sharma et al, the TV denoising is performed
using gradient descent. The phantom used in the simulations is a slightly elongated version of the 3D Shepp—
Logan phantom (Shepp and Logan 1974) of size 1341 voxels x 678 voxels x 283 voxels with a voxel size of ~
0.143 mm. The goal of the simulations is to compare the methods in terms of convergence rate, reconstruction
time, and the CNR and RMSE of the reconstructed slices for both a large and a small overlap region.
Furthermore, we assess the performance of the WIR method without applying TV denoising to the
reconstructed volume, referred to as weighted SART or W-SART. Finally, the possibility of speeding up the
W-SIRT method is investigated.

Using the ASTRA toolbox, 450 forward projections of the voxel model were obtained over 360° by applying
the forward projection operators. In the projection geometry, a conical x-ray beam was used of which the angle is
automatically set by ASTRA to cover the full extent of the detector. The detector was chosen to have 2048 pixels
in the t-dimension and 700 pixels in the v-dimension. Gaussian noise and blur were added to the projections, as
it was shown in our previous work that this is in good agreement with the noise and blur characteristics of our
real detectors (Sanctorum et al 2020a). The geometry parameters in the simulations, found in table 1, were
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Figure 2. The stereoscopic 3D*YMOX system. The x-ray sources are attached to ceiling gantries, whereas the XRIIs are mounted on
hydraulic trolleys. In the middle, the rotation stage is shown. The height of the rotation stage is provided to indicate the dimensions of
the set-up.

Figure 3. Used study objects. (a) LEGO phantom. (b) PMMA phantom containing PVC tubes. (c) Frozen rabbit specimen.

Table 1. Simulation parameters.

Phantom SRD (mm) DRD (mm) 2 T (mm) N, N, N,
Shepp-Logan 1770 230 63.9 450 2048 700
Shepp—Logan 1770 230 6.8 450 2048 700

The distances from the source to the rotation axis and from the detector to the rotation axis are
denoted as SRD and DRD, respectively. The width of the overlap region is defined as 2T (see
figure 2). For each set dataset, 450 projections (N;) were sampled over 360°. The number of
detector pixels in both dimensions is given by N, and N,, respectively.

chosen to correspond to the physical parameters of the set-up. To simulate the detector offset, the projection
data was truncated in the #-dimension. First, 800 pixels were truncated to simulate an overlap region of 448
pixels (or 63.9 mm). Then, 1000 pixels were truncated, resulting in an overlap region of 48 pixels (or 6.8 mm).
The overlap region is different in size, but the size of the FOV remains the same (292 mm). To examine the
difference between the convergence rate using a centered detector and an offset-positioned detector,
reconstructions are also made using the full, non-truncated projection data. For the assessment of the methods,
only the central slice was reconstructed.

2.4.Image acquisition

The radiographs were recorded using the stereoscopic 3D*YMOX (3D DYnamic MOrphology using x-rays)
imaging system (Sanctorum et al 2019) (figure 2). The recorded images consist of 2048 pixels x 2048 pixels
coveringa FOV 0f292 mm x 292 mm (pixel size ~ 0.143 mm). To rotate the samples, a custom-made rotation
stage was used. A frequency-controlled asynchronous motor, equipped with a factor 40 gearbox, allows the top
platform to make a complete revolution in ~2 s, during which the projection data is continuously recorded with
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Table 2. Experimental scanning information.

Tube Tube
LEGO phantom phantom
phantom (air) (water) Rabbit
SRD (mm) 1248 1762 1762 1762
DRD (mm) 237 230 230 230
I(mA) 40 40 10 44
V(kV) 60 70 86 70
N, 450 450 450 450
A6 (°) 0.8 0.8 0.8 0.8
At (ms) 0.5 0.5 0.5 0.5

For each of the conducted experiments, the data acquisition parameters are
presented. The distance from the source to the rotation axis (SRD), as well as
the distance from the detector to the rotation axis (DRD) are given. The tube
current (I) and voltage (V) are also shown. The number of recorded
projections, the angular interval between the projections, and the shutter time
are denoted as N, A0, and At, respectively.

ashutter time of 0.5 ms. As the 3D*YMOX system is highly modular (all components can be translated and
rotated independently), there is a continuous range of possible detector offset, but every modification of the set-
up requires a calibration of the system’s geometry, for which a method developed by Nguyen et al was applied
(Nguyen et al 2021). Since the images are recorded using x-ray image intensifiers (XRIIs), geometric distortion is
present in every frame, deteriorating the accuracy of the geometry calibration and the quality of the tomographic
reconstruction. A method developed earlier by Sanctorum et al was used to remove the distortion from the
images prior to geometry calibration and subsequent reconstruction (Sanctorum et al 2020a, 2020b).

2.5. Experiments

2.5.1. LEGO phantom

The first experiments were carried out using a test phantom built of LEGO® bricks (figure 3(a)), with dimensions
of 183 mm x 128 mm X 76 mm. The phantom was built to fit within the FOV of a centered detector. This way,
the reconstructions obtained with an offset-detector and the W-SIRT algorithm can be compared to those of a
regular SIRT reconstruction (centered detector). To validate our proposed method for different sizes of overlap
regions, the detector was manually set in four different offset positions, varying between 0 and 100 mm in steps
of approximately 25 mm.

After each manipulation of the geometry, it is indispensable to record a dataset to calibrate the geometry of
the set-up. For geometry calibration, a method developed by Nguyen et al is used (Nguyen et al 2020, 2021). The
amount of detector shift can be extracted from the calibration results, which will be used to calculate the
resulting effective FOV.

The purpose of the LEGO phantom is mainly to examine the difference in convergence rate, reconstruction
quality, and computation time for a centered reconstruction and reconstructions obtained with different
detector offset values. The phantom contains three gear-shaped objects at different heights and different
distances from the center of the phantom that have homogeneous regions suitable for CNR calculations. Besides
the quantitative analysis using the CNR and the Cgys, the reconstructed volumes will be compared visually. In
these analyses, the W-SIRT algorithm is compared to the W-SART algorithm. Table 2 shows the conditions
under which the radiographs of the phantom were recorded. The phantom was positioned on the rotation stage
resting on its largest surface with the studs of the LEGO bricks pointing upwards, as in figure 3(a).

2.5.2. PVC tube phantom

To validate the method on a sample of which the size exceeds the width of the detector, a phantom containing
PVC tubes was built, which is shown in figure 3(b). The PVC tubes are mounted in a case of PMMA (thickness of
5 mm) of which the outer dimensions are 380 mm X 150 mm x 150 mm. The long PVC tubes have lengths of
370 mm, whereas the short tubes have lengths of 140 mm. All tubes have an outer diameter of 31.7 mm, but the
gray tubes are hollow whereas the red tubes are solid. The PMMA case has a removable lid, so the phantom can
be filled with, for example, water. To record the projections, the phantom was placed on the rotation stage with
the three short horizontal tubes parallel to the floor. First, the phantom was imaged in an empty state (filled with
air), then it was imaged again filled with water. The imaging conditions can be found in table 2.
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Figure 4. (a) Convergence curves for the iterative methods under consideration for a detector overlap of 2T= 63.9mmand fora
centered detector (indicated by the word ‘center’ in the legend). On the curves, the number of iterations for which convergence can be
claimed (based on the proposed criterion) are marked with a ‘0’ and a “*” symbol for the SIRT and SART methods, respectively. The
scale of the vertical axis is logarithmic. (b) Final 150 iterations of the curves in (a) to illustrate the differences invisible in (a).

2.5.3. Rabbit

To validate our proposed method on a biological sample of which the dimensions are too large to be imaged with
a centered detector, we recorded data of a rabbit specimen. The specimen was borrowed from the veterinary
sciences department of the University of Antwerp, where it was sacrificed earlier for other research purposes
unrelated to this work and was delivered to us in a frozen state. As shown in figure 3(c), the rabbit had a
horizontal span of more than 40 cm. The effective span of the rabbit as projected on the detector was larger than
45 cm due to the magnification factor of 1.13 (see table 2 for scanning information), vastly exceeding the physical
size of our detector (292 mm). During the acquisition, the rabbit was positioned on the rotation stage on its side,
as viewed from above in figure 3(c) (rotation axis through its flanks). The imaging parameters are found in

table 2.

3. Results

Prior to showing the results, it needs to be mentioned that numerical analyses, such as CNR and contrast
calculations were carried out on the raw output values of the reconstructed volume, without any postprocessing.
For display purposes, for example in graphs or reconstructed slices, the values were scaled to integer values
between 0 and 255.

3.1. Simulation results

In the simulations, the reconstructed central slice had a size of 1440 voxels x 780 voxels with a voxel size of
0.143 mm. First, the convergence rate of the proposed W-SIRT method was examined by calculating the RN
after each iteration. This was also done for the W-SART and W-SART-TV methods. In figure 4, the convergence
curves are shown for 350 iterations of each method (panel (a)) for a centered detector and for an overlap region
of 2T = 63.9 mm. Panel (b) shows the RN of the last 150 iterations to increase visibility.

Itis shown in panel (a) that for a centered detector, the SIRT and SART algorithms (both not weighted)
converge at roughly the same rate during the early iterations. However, during the later iterations, it is seen that
the SIRT algorithm converges faster and that the convergence curve is more stable. When a laterally shifted
detector is used, it is apparent that the W-SIRT algorithm converges slower than in the case of a centered
detector, and the same is true for the W-SART method in comparison to the centered SART method. By
including TV denoising in the W-SART method, the convergence curve of centered SART is approximated in
the later iterations. The W-SIRT algorithm catches up with the centered SART algorithm after approximately 50
iterations and it is shown in panel (b) that the W-SIRT method converges faster than de SART variants.

Itis undesirable for the SIRT algorithm to converge slower in case the detector is put in an offset position, as
this implies that more iterations are necessary to reach convergence, which is time-consuming. We therefore
aim to accelerate the convergence rate of the W-SIRT algorithm by incorporating the relaxation parameter a of
equation (3)in (5):

x®+D = x® 1 CATRW (p — Ax®). ©)

It was previously shown (Gregor and Benson 2008) that the convergence rate of the SIRT algorithm could be
increased by choosing the value of a to lie between 1 and 2. In the work of Gregor and Benson it is stated that a

valueof o = with e < 0.005 could double the rate of convergence, given it would lead to a correct

1+ €
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Table 3. Convergence overview.

Method Ni AL )
Centered SART 164 0.102
W-SART 125 0.102
W-SART-TV 112 0.266
Centered SIRT 203 0.128
W-SIRT 316 0.129
aW-SIRT 201 0.130

Number of iterations Nj, and average
time per iteration At;, for the curves
shown in figure 4.

bound on the minimum eigenvalue of the matrix CA” RA. Therefore, we have chosen the value of € =0.005,
resultingin & = 1.99 in equation (9). The weighted SIRT method corresponding to equation (9) with the given &
will be referred to as accelerated W-SIRT, or aW-SIRT, from now on. On both panels of figure 4, it is shown that
the aW-SIRT algorithm indeed converges faster than the regular W-SIRT algorithm and that its convergence
curve approximates the one of the centered, not-weighted SIRT algorithm.

Based on our data, a suitable criterion to claim convergence would be to state that the RN drops below 10%
RNi_1 — RN;
RN,
with i the iteration number, drops below 0.1%. These convergence points are indicated in figure 4 using ‘o’ and

“ symbols for the SIRT and SART methods, respectively. In table 3, the exact number of iterations Nj; for which
convergence is reached is shown for each of the methods, along with the average time per iteration At;, for the
curves in figure 4.

From table 3, it would seem that the SART methods converge at a faster rate than the SIRT methods.
However, figure 4 shows that on the points where convergence could be claimed based on the criterion, the
SART methods actually have not converged yet. In the SART methods, it is possible that a single iteration does
not bring much new information, and therefore the RN barely alters, resulting in a small ARN;. This does not
occur for the SIRT methods, and the convergence claim is more reliable. Therefore, we have chosen to run the
same number of iterations in the SART methods as in the W-SIRT method, as these curves are the most alike.
Table 3 additionally shows that the time per iteration is generally smaller when using SART or W-SART, but the
additional TV denoising tremendously increases the computation time.

In figure 5, central slice reconstructions of the 3D Shepp—Logan phantom are shown for the different
reconstruction methods, being pre-convolutional FDK and the SIRT and SART variants described earlier. The
number of iterations for each method was chosen based on the convergence criterion (table 3). In the first
column, the typical artifacts related to an off-centered detector are shown. These have the form of bright circular
artifacts, marking the overlap region. However, as is shown in the ROI images below the full slices, these artifacts
may also introduce streak artifacts outside of the overlap region. It is shown that all of the proposed weighted
reconstruction methods successfully remove the artifacts. The only exception is the pre-convolutional FDK
method in case of a small detector overlap, where an artifact remains in the center (white arrow in bottom row).
This was expected, as it was already shown in early literature that pre-convolutional FDK introduces artifacts in
the case of a small redundancy region (Cho et al 1996).

Itis shown that, in the case of a centered detector, the FDK algorithm provides the best reconstruction in
terms of RMSE and speed, but the SIRT algorithm provides the best CNR. The SART reconstruction displays
some non-uniformity (mostly in the background) and has a CNR comparable to the FDK reconstruction, but it
is faster than the SIRT algorithm for the same number of iterations. When the detector is laterally shifted, the
CNR drops and the RMSE rises for the W-FDK method. The rise of RMSE is due to the fact that the raw output
of the FDK algorithm is globally darker than the original phantom, which is not the case for the iterative
methods. The SART methods provide a higher CNR and a lower RMSE than FDK, showing that the SART
methods can deliver better reconstructions at the cost of alonger computation time, which is most apparent
using the W-SART-TV method. The TV denoising step results in a better CNR, but a slightly lower RMSE at the
cost of a steep increase of the computation time. The W-SIRT method is slightly slower than the W-SART
method, but the CNR is vastly increased and the RMSE is slightly lower. The aW-SIRT method is the fastest of
the proposed weighting schemes and provides an RMSE which approximates the RMSE of a centered SIRT
reconstruction, at the cost of a slightly lower CNR as compared to the W-SIRT algorithm. For the iterative
methods, the CNR and RMSE seem to be unaffected by the amount of detector overlap.

Visually, both the SIRT and SART methods provide decent reconstructions, but the SIRT methods seem to
suffer less from noise, as is also shown in figure 6. This figure shows line profiles of vertical cross-sections at the

of its original value while the relative difference between two subsequent RN, calculated as ARN; =
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Figure 5. Central slice reconstructions using the different reconstruction methods under consideration (different columns) for a
centered detecter (first row), an overlap region of 2T= 63.9 mm (second row), and an overlap region of 2T= 6.8 mm (bottom row).
The first column shows the phantom and typical artifacts that occur when no weighting is applied in an offset geometry. On the
original phantom, two white squares of equal size indicate the regions used for CNR calculations. On each panel, the CNR, RMSE with
the original phantom slice, total reconstruction time and number of iterations are indicated. Below each panel, an ROI of the three
elliptical shapes in the bottom of the slice are shown to highlight details. The white arrow in the bottom row indicates remaining
artifacts when using pre-convolutional FDK for small overlap sizes. The grayscale in the top right applies to all panels.

center of the reconstructed slices (panels (a)—(c)) and horizontal cross-sections through the center of the three
elliptical shapes at the bottom of the slices (panels (d)—(f)). For the weighted reconstructions, only the line
profiles of the reconstructions for which 2T= 6.8 mm are shown, as the curves are nearly identical to those of
2T = 63.9 mm. By comparing panels (a) to (c), it is clear that the SIRT reconstructions are superior in terms of
noise suppression, followed by the SART reconstructions. For the weighted FDK method, it is shown that the
gray values lie substantially lower than those of the original phantom and centered reconstruction. Also, the dip
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Figure 6. Vertical cross-sections at the center of the reconstructed central slice for (a) the SIRT methods, (b) the SART methods, and
(c) the FDK methods. Panels (d)—(f) show horizontal cross-sections through the center of the three elliptical shapes at the bottom of
the slice in the same order. The black arrow in panel (c) highlights the redundancy artifact that remained using FDK for a small
redundancy region. The legends in the top panels also apply to the corresponding panels below.
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Figure 7. Convergence curves for each of the values for the lateral detector shifts A = {26.6, 45.5, 63.5, 89.7} mm and the different
reconstruction methods. In each panel, the inset shows the RN values for the last 100 iterations to increase the visibility of the
difference between the curves. The legend applies to all panels.

in the gray values caused by the unsuccessful removal of the central artifact is visible, as indicated using a black
arrow. In panels (a) and (b) it is hard to discriminate between the line profiles of the different methods, but
differences are more noticeable in panels (d) and (e), although the line profiles for the three SIRT methods show
no considerable differences. The line profiles in panel (¢) show that the W-SIRT-TV method indeed reduces the
noise, resulting in an increase of CNR. In panel (£) it is again shown that the weighted FDK results in overall
lower gray values, and the three peaks of the elliptical shapes are nearly unidentifiable due to the noise.

3.2.LEGO test phantom
As formerly described, the detector was manually shifted over distances of approximately 25 mm. Subsequent to
each lateral shift, a calibration dataset, as well as a dataset of the LEGO phantom, was recorded. After calibration,
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Figure 8. Horizontal reconstructed slices of the LEGO phantom at heights h; = —9.98 mm (left column), h, = 8.85 mm (middle
column), and k53 =27.95 mm (right column) relative to the center of the reconstructed volume for each of the reconstruction
algorithms under consideration (centered SIRT, W-SART, W-SIRT, and aW-SIRT). Below each full panel, ROIs are shown that are
indicated in the top row using white rectangles and numbers 1-3. ROIs 1 and 2 contain white rectangles of 10 pixels x 50 pixels to
indicate the image regions used for CNR calculations. The gray values in all panels are windowed between 0 and 255.

the different detector shifts were found tobe A = {26.6, 45.5, 63.5, 89.7} mm. For each of the lateral shift
values, the datasets were reconstructed using W-SART, W-SIRT, and aW-SIRT in a reconstruction volume of
650 voxels x 500 voxels x 800 voxels with a voxel size of 0.285 mm. The convergence rates of the different
methods were examined first.

Figure 7 shows that, as predicted by the simulations, the aW-SIRT algorithm has a faster convergence rate as
compared to W-SIRT due to the relaxation parameter. The convergence curves of W-SIRT and W-SART are
quite similar during the first few iterations, but it is clear that later on, the W-SIRT algorithm converges more
stably. While the W-SIRT algorithm converges to the same value for the RN as aW-SIRT (only slower) after
about 200 iterations, the same is not true for the W-SART algorithm, as seen in the insets. The similarity of the
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Figure 9. Central regions of slices at i and A = 26.6 mm using 100 and 200 iterations of centered SIRT, W-SART, W-SIRT, and aW-
SIRT. The gray values are windowed between 0 and 255.
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Table 4. Experimental results using the LEGO phantom.

N A (mm) FOV (mm) Method CNR, CNR, CNR; (CNR) Crats At (s)
200 0 292.0 SIRT 17.88 16.76 12.56 15.74 8.35 1814.7
26.6 345.2 W-SART 12.11 13.33 6.44 10.63 7.48 1437.7

W-SIRT 19.82 15.92 15.37 17.04 7.12 2260.1

aW-SIRT 13.56 13.42 9.77 12.25 7.94 2075.6

455 383.0 W-SART 12.94 18.91 8.85 13.57 7.27 1658.5

W-SIRT 21.53 25.41 14.88 20.61 6.98 1990.2

aW-SIRT 13.71 20.30 10.21 14.74 7.78 1990.6

63.5 419.0 W-SART 14.24 15.38 10.14 13.25 7.32 1730.7

W-SIRT 21.48 19.39 20.90 20.59 7.09 1967.6

aW-SIRT 14.01 15.43 13.08 14.17 7.87 1974.3

89.7 471.4 W-SART 9.96 14.30 9.30 11.18 7.32 1883.8

W-SIRT 15.29 19.83 19.25 18.13 7.20 1923.8

aW-SIRT 10.77 14.77 12.26 12.60 7.93 1956.0

100 0 292.0 SIRT 27.20 21.11 19.17 22.49 7.55 1493.0
26.6 345.2 W-SART 13.40 16.52 9.47 13.13 6.63 1196.0

W-SIRT 24.82 20.18 22.88 22.62 6.27 1658.9

aW-SIRT 19.86 15.93 15.41 17.07 7.12 1661.1

455 383.0 W-SART 15.26 25.72 10.21 17.06 6.43 1209.7

W-SIRT 34.37 33.83 20.96 29.72 6.14 1620.8

aW-SIRT 21.59 25.43 14.92 20.65 6.98 1621.4

63.5 419.0 W-SART 16.87 18.62 13.21 16.23 6.49 12186

W-SIRT 35.27 25.83 33.92 31.67 6.25 1583.4

aW-SIRT 21.54 19.41 20.97 20.64 7.09 1583.5

89.7 471.4 W-SART 12.49 17.44 13.33 14.41 6.51 1247.7

W-SIRT 22.59 27.57 29.67 26.61 6.37 1523.7

aW-SIRT 15.31 19.86 19.31 18.16 7.19 1548.7

For each value of lateral detector shift A (and corresponding width of the FOV), the value of the CNRs is shown along with the
total reconstruction time. CNR; corresponds to the CNR calculated in the slice at /;, and the average CNR over the different
heights is given as (CNR). The value of Crys is calculated over the full reconstructed volume. The number of iterations is given

by Ni.

curves in the different panels indicates that the convergence rates of the methods are not affected by the amount

oflateral detector shift.

Next, figure 8 shows horizontal reconstructed slices of the LEGO phantom of different heights (h; =
—9.98 mm, h, = 8.85 mm, and h; = 27.95 mm relative to the center of the reconstructed volume) for a centered
reconstruction using 200 iterations of SIRT and for reconstructions obtained using a shifted detector (A =
89.7 mm) using 200 iterations of W-SART, W-SIRT and aW-SIRT. Slices for other values of the detector shift are
not shown as they appear nearly identical. It is observed through visual inspection that for the shifted
reconstructions, no circular artifact is present coaxial to the rotation axis, which implies that the weighting
scheme indeed corrects for data redundancy and edge truncation in the reconstruction algorithms under
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consideration. By comparing the edges of the LEGO bricks close to the center of the volume to those closer to the
edge of the object, it is seen that the edges away from the center become more blurry. This is rotation blur caused
by recording projections under continuous rotation and is unrelated to the proposed reconstruction algorithm
or weighting scheme. The ROIs shown below each panel indicate that in general, the reconstruction obtained
with W-SIRT is slightly more blurry than the one obtained with W-SART, but it is also less noisy. The
reconstruction obtained with aW-SIRT seems sharper than those obtained with W-SART and W-SIRT, but
appears to be noisier than the W-SIRT reconstruction. To quantitatively assess the contrast in the different
reconstructed volumes, the CNR was calculated in the three gear-shaped objects that are located on the three
different heights (hy, h, and h3). In ROI 1 and ROI 2 of the first row, white rectangles of 10 voxels x 50 voxels
indicate the regions that were used for CNR calculations. The calculations were performed for each of the
reconstruction algorithms and each value for detector shift, as well for the centered reconstruction (using 200
iterations of regular SIRT). In table 4, the results of the CNR calculations are shown, along with information on
the computation times of the algorithms and the total effective FOV obtained by applying the lateral detector
shift, which is calculated as the sum of the true width of the detector d and twice the shift value A. Apart from the
CNR, also the RMS contrast, calculated over the full reconstructed volume using equation (6), is shown. In the
table, the same results are shown for 100 iterations.

Table 4 shows that, in general, the average CNR is decreased when an offset geometry is used. This is
probably caused by the detector recording less rays that pass through the object and more background rays (in
the case of the LEGO phantom), resulting in less recorded signal, which would increase the noise. However, this
does not hold for the W-SIRT method, as the CNR appears to be higher as compared to the centered
reconstruction for the same number of iterations. This is understood by considering that the W-SIRT algorithm
converges slower than the centered SIRT algorithm and thus the fine details, such as noise, are only
reconstructed in later iterations. Therefore, the W-SIRT is expected to produce more homogeneous regions in
the signal and the background, resulting in a higher CNR. This does not mean that the contrast itself is better (see
figure 9). By comparing the average CNR values of W-SART, W-SIRT, and aW-SIRT, those of W-SART are
found to be lower than those of W-SIRT and aW-SIRT, probably because SART is inherently more sensitive to
noise (see convergence curves). Based on the obtained values for the Cyys, there is aloss of contrast when the
detector is shifted laterally for the same number of iterations, regardless of the reconstruction method used.
However, the contrast in the aW-SIRT reconstructions is the greatest, followed by W-SART and W-SIRT for the
same number of iterations. It is also noticed that the CNR and Cgyys values for the W-SIRT reconstructions using
200 iterations are very similar to those of the aW-SIRT reconstructions using only 100 iterations, regardless of
the detector shift. This may imply that the application of the relaxation parameter approximately doubles the
convergence rate. The reconstruction times of W-SART are generally shorter than those of W-SIRT and aW-
SIRT, but seem to increase with increasing detector shift. This is understood by the fact that W-SART, in
contrast to W-SIRT and aW-SIRT, requires the projection data to be padded with zeros outside the redundancy
region where data is non-existent. This implies that the size of the projection data grows in size as the detector
shiftis increased, resulting in the rise of memory usage. The W-SART method was also applied without padding
the projection data, but this resulted in uncorrected redundancy artifacts (not shown in this work), while
W-SIRT and aW-SIRT also produce redundancy-artifact-free reconstruction without data padding. The
reconstruction times of W-SIRT and aW-SIRT are similar, but seem to slightly decrease by increasing the
detector shift. This is quite remarkable, as the only difference between the datasets are the gray values of the
projection data and the values in the matrix W. A possible explanation for this is the fact that, for alarger
detector offset, the projection data contains more background pixels, which can assume the value of zero, and
the matrix W contains more values that are equal to one instead of decimal numbers between zero and one. This
might be more efficient in the calculations involved, although we do not claim this is the reason why.

Figure 9 shows central regions of the reconstructed slice at ; with A = 26.6 mm for a centered
reconstruction using 100 or 200 iterations of SIRT and shifted reconstructions using 100 or 200 iterations of
W-SART, W-SIRT, and aW-SIRT. Comparing the regions for the same number of iterations shows that,
visually, the W-SART and W-SIRT algorithms produce slices with decreased contrast (mostly W-SIRT), but the
W-SART reconstruction seems noisier. The slices reconstructed using aW-SIRT visually resemble the slices of
the centered detector the most and therefore may be more favorable. The visual quality of the centered
reconstruction for 100 iterations is very similar to the W-SIRT and aW-SIRT iterations using 200 and 100
iterations, respectively. These visual observations are in agreement with the CNR and Cgy,s values reported in
table 4.

3.3. Large objects
After validation of the proposed method on the LEGO phantom (which was sufficiently small to be imaged with
a centered detector), the method was tested on two samples for which the detector offset method is required. The
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Figure 10. Convergence curves of (a) the empty PMMA phantom and (b) the rabbit specimen for 200 iterations. The convergence
curves of the water-filled PMMA phantom are not shown as the curves are very similar. In both panels, the inset shows the curves for
the last 100 iterations to highlight differences between the methods.

No weighting aW-SIRT

Air-filled
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Figure 11. Reconstructed slices of the PVC tube phantom filled with air (top two rows) and filled with water (bottom two rows)
obtained using 100 iterations of regular SIRT without applying redundancy weighting (first column), using 200 iterations of W-SART
(second column), and using 100 iterations of aW-SIRT (last column). The first and third row show horizontal slices, whereas the
second and fourth row show vertical slices. White arrows on the slices in the left column indicate artifacts and the white squares of 50
voxels x 50 voxels indicate the regions that were used for CNR calculations (the regions in the signal are labeled using the numbers
1-3). The scale bar in the top middle panel and the grayscale below apply to all panels.

first large sample is the PMMA container with PVC tubes, the second is the frozen rabbit specimen (see
figures 3(b) and (c)). The phantom containing PVC tubes in a PMMA case was imaged twice: the first time it was
empty (or filled with air) and the second time it was filled with water. The lateral shift of the detector was equal to
111.9 mm according to the calibration, yielding an effective FOV of 515.8 mm, which is a gain 0 76.6%
compared to the FOV of the centered detector (292 mm). The phantom was reconstructed in a volume of 800
voxels x 800 voxels x 1450 voxels with a voxel size 0of 0.285 mm. Figure 10(a) shows the convergence curves for
the reconstruction of the PMMA phantom in an empty state. The curves for the water-filled PMMa phantom are
not shown as they are very similar. As is the case for the LEGO phantom, the aW-SIRT algorithm has the fastest
convergence rate, and the curve of the W-SART algorithm is more unstable.

Horizontal (view along the rotation axis) and vertical (view perpendicular to the rotation axis) slices of the
reconstructed phantom are shown in figure 11. As the LEGO phantom experiments showed that the
reconstructions using 200 iterations of W-SIRT and 100 iterations of aW-SIRT were nearly identical, only slices
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Figure 12. Vertical slices showing different anatomical structures of the rabbit specimen, namely the pelvis (left column), the spine
and the ribs (middle column), and the head and the teeth (right column). The top row shows the slices obtained with 200 iterations of
W-SART, whereas the bottom row shows those obtained using 100 iterations of aW-SIRT. In the top row, the white squares (20 voxels x
20 voxels) indicate regions in the tissue and the background that were used for CNR calculations. The grayscale and 50 mm scale bars
apply to their corresponding column.

Table 5. Experimental results using the PMMA phantom.

A (mm) FOV (mm) Method Nit CNR, CNR, CNR; (CNR) Crus At (s)
111.9 515.8 E W-SART 200 29.78 22.27 23.82 25.29 3.54 8371.9
aW-SIRT 100 30.32 26.53 27.84 28.23 3.57 4761.6

w W-SART 200 8.17 13.63 16.31 12.70 3.76 8357.3

aW-SIRT 100 9.44 12.88 15.36 12.56 3.85 47343

In this table, the letters E and W indicate whether the PMMA phantom is empty (or air-filled) or water-filled, respectively. The different
CNR values correspond to the labeled regions in figure 11. Same symbols as in table 4 apply.

of 100 iterations of aW-SIRT are shown. The number of iterations of the W-SART reconstruction was 200. In
the left column, artifacts related to positioning the detector in an offset position can be clearly seen, as no
redundancy weighting was applied. These artifacts are observed in the form of a bright circular artifact coaxial to
the rotation axis, causing additional shading artifacts as well (mostly observed in the lower two panels of the left
column). Using W-SART or aW-SIRT, these artifacts are successfully removed. Visual inspection of the slices
suggests that the slices obtained using aW-SIRT are slightly less noisy. Quantitative measures such as CNR and
Crus can be found in table 5.

In figure 11, it is important to notice that in the bottom row, when the phantom is filled with water, the
contrast for the long tube disappears near the center of the volume. This is not the case when the phantom is
filled with air (second row). The disappearance of this contrast is thus not related to positioning the detector in
an offset position but is due to the limited dynamic range of the XRII. The shorter tubes suffer less from this
contrast loss, showing that shapes of large aspect ratio are more sensitive to this artifact. As animals, for example,
usually have such aspect ratio, these artifacts are important to consider. Nevertheless, this experiment proves the
possibility of reconstructing an object of which the width exceeds the width of the detector by positioning the
detector in an offset position and by using the aW-SIRT algorithm.

Table 5 shows that, in case the phantom is empty, the aW-SIRT provides a reconstruction with higher CNR
as compared to W-SART. When the phantom is filled with water, the differences are smaller. The differences in
Cruss are not in favor of one method. Itis, however, important to notice that the results obtained using aW-SIRT
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Figure 13. Side and top views (top and bottom row) of 3D-renderings using maximum intensity projection. (a) Rabbit specimen.
(b) Empty PVC tube phantom. (c) Water-filled PVC tube phantom.

Table 6. Experimental results obtained using the rabbit specimen.

A (mm) FOV (mm) Method Ni CNR, CNR, CNR; (CNR) Cruss At (s)
110 512 W-SART 200 23.40 27.25 27.32 29.79 4.14 7621.2
aW-SIRT 100 29.97 29.24 30.14 25.99 4.17 4414.8

The index of the CNRs reported in this table corresponds to the number of the column in figure 12. Same symbols as in table 5
apply.

only required 100 iterations at a time of ~4800 s, while W-SART required 200 iterations and a total computation
time of ~8400 s. As the CNR and Cgjs do not differ much, the best choice would in this case be the aW-SIRT
algorithm due to the (much) shorter computation time.

Finally, to demonstrate our proposed method on a biological sample, a rabbit specimen was scanned with
parameters that can be found in table 2. During this experiment, the detector was shifted over A =110 mm,
yielding a redundancy region of 2T = 72 mm and an effective FOV of 512 mm. The reconstructed volume had a
size of 1200 voxels X 500 voxels X 1450 voxels with a voxel size 0f 0.285 mm. Convergence curves of the different
algorithms can be found in figure 10(b). Again, the aW-SIRT algorithm is found to converge at the fastest rate,
while the convergence curve of the W-SART algorithm displays instability. In figure 12, ROIs of vertical slices
(parallel to the rotation axis) of the rabbit are shown, displaying the pelvis, the spine and ribs, and the head and
teeth. The slices were obtained using 200 iterations of W-SART and 100 iterations of aW-SIRT. As the
experiments with the PMMA phantom already showed that both methods would remove the redundancy
artifacts, slices of a non-weighted reconstruction are not shown. Visual inspection of the slices suggests that the
slices of the aW-SIRT reconstruction are slightly less noisy (mostly visible in the slice containing the pelvis). The
slice containing the spine and ribs displays a slightly better contrast in the aW-SIRT reconstruction. The teeth
seem to be more distinguishable in the aW-SIRT reconstruction, and the edge at the mouth of the rabbit seems
sharper. Some ring artifacts are still visible when using the W-SART or aW-SIRT method, which are visible as
subtle black vertical streak in the slice showing the pelvis. These originated from remaining dark-field artifacts
and are unrelated to the proposed method. For these reconstructions, three values for the CNR were calculated
in the soft tissue (see white squares in the top row of figure 12) and the Cgyys values for the total volumes were
calculated and reported in table 6:

Table 6 shows that in general, the CNR values for the aW-SIRT reconstruction are higher, which is in
agreement with the visual inspection. However, the difference in Cpyys is negligible. Again, only 100 iterations of
the aW-SIRT algorithm were used to obtain these results, yielding a shorter total computation time as compared
to W-SART.

As one of the goals of this work is to propose a method to increase the FOV for tomographic reconstruction,
we demonstrate the FOV gain in the extended reconstructed volumes, by providing images of 3D renderings of
the rabbit and the PMMA phantom (empty and water-filled) using maximum intensity projection. The images
can be found in figure 13. The reconstructions were obtained using the aW-SIRT algorithm.
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4. Discussion

The proposed redundancy weighting scheme implemented in the SIRT algorithm (W-SIRT) was first tested in
simulations using central slice reconstructions of 3D Shepp—Logan phantom. It was compared to the pre-
convolutional FDK method and the W-SART(-TV) method. The convergence curves (figure 4) readily showed
that, by positioning the detector off center and by applying the redundancy weighting scheme, the convergence
rate decreased. This was both true for SIRT and SART. A decrease of convergence rate is an undesirable side-
effect of the method, and would imply that more iterations are needed to obtain a converged reconstruction. To
this end, we introduced a relaxation parameter < in the W-SIRT scheme, resulting in the aW-SIRT algorithm.
Following the work of Gregor and Benson, the relaxation parameter & was chosen as 1.99. This turned out to be
areasonable choice, as indeed the convergence rate was increased and the convergence curve of a centered
detector was approximated. Whether the convergence rate of the aW-SIRT algorithm can be accelerated even
further is yet to be studied. Presumably, higher convergence rates can be achieved by using other SIRT-like
methods, such as the conjugate gradient least squares (CGLS) method or a Barzilai-Borwein approach. However,
this is beyond the scope of the current work.

Another important result obtained from the simulations is that the weighted SIRT and SART algorithms
perform well for both small and large detector shifts (Hansis et al 2010, Bian et al 2012), which is not the case for
pre-convolutional FDK. However, the W-SIRT and aW-SIRT algorithm seem to provide reconstructions with a
higher CNR and lower RMSE as compared to SART and SART-TV. Due to the high convergence rate of the aW-
SIRT algorithm, less iterations are necessary to reach convergence, resulting in a lower total computation time
than W-SART, although the average computation time per iteration is shorter for W-SART. The benefits of
incorporating TV denoising in the W-SART algorithm are limited, and the vast increase in computation time
deteriorates its usefulness for reconstructing large 3D volumes. Finally, we highlight the fact that, in the
simulations, the detector used was of the flat-panel type. This indicates that the proposed method applies to flat-
panel detectors as well, requiring no alterations, demonstrating the generality of the method.

After conducting simulations, we have tested our proposed method using experimentally using different
study objects, each with their own purpose. Using the LEGO phantom, the convergence rate, image quality (in
terms of CNR and Cgyys), and computation time were assessed for the different reconstruction algorithms and
for different values of the detector offset. It was shown that the aW-SIRT algorithm indeed has the fastest
convergence rate due to the relaxation parameter, and that the convergence of W-SIRT and aW-SIRT is more
stable as compared to W-SART. This implies, as shown in table 4, that desired levels of CNR and Cgy;5 can be
reached faster using aW-SIRT as opposed to W-SIRT or W-SART. Given the larger values for the CNR and the
Crus of the aW-SIRT algorithm as compared to the W-SART algorithm, it might be possible to obtain
reconstructions with the aW-SIRT algorithm of the same image quality as those obtained with W-SART, but
with alower dose. The methods were not compared to FDK in the experiments due to the complex imaging
geometry, but the simulations also pointed out that higher CNRs could be obtained using iterative methods
instead of FDK. The data in table 4 and the ROIs shown in figure 9 are in favor of the aW-SIRT algorithm,
provided that the number of iterations is limited. For example, 100 iterations of the aW-SIRT algorithm were
sufficient to obtain a reconstruction of similar quality using 200 reconstructions of W-SIRT, while the visual
quality was similar to that of a centered reconstruction using 100 iterations of SIRT.

The general loss of CNR in the reconstructed slices using detector offset geometry was reported earlier by
Mettivier et al in a phantom study in the field of breast CBCT (Mettivier et al 2012). However, it was also shown
in their work that by blocking the fraction of the beam that would irradiate the sample but would not be seen by
the detector (due to the offset position) before it reaches the sample, the amount of scatter and the dose would
decrease. This resulted in a larger CNR per unit dose as compared to a centered detector. Collimation of the
‘unuseful’ part of the beam was not applied in this work, but the combination of this half-beam collimation in
combination with aW-SIRT reconstruction yields interesting opportunities for dose reduction at fixed image
quality. This is, however, beyond the scope of the current work.

As seen in figure 9, the reconstructed slices of the LEGO phantom exhibited blurring artifacts near the
periphery of the reconstructed volume. These artifacts are unrelated to the detector offset method as these were
also presentin the case of a centered detector. Presumably, these artifacts are caused by continuously rotating the
sample while recording. In other experiments (not described in this manuscript) we have enlarged the rotation
period while decreasing the shutter time to eliminate the angular integration, as was described elsewhere (Krebs
etal2018), but the artifacts remain. We therefore believe that the blurring artifacts might be due to scintillator
lag, as XRIIs are known to have lag times of the order of milliseconds (Wang and Blackburn 2000). As larger
objects (which are the aim of FOV enlargement techniques) will suffer more from these blurring artifacts, itis an
important aspect to consider in detector offset applications.

Using the PMMA phantom, the W-SART and aW-SIRT algorithms proved to be able to reconstruct large
objects free of artifacts related to positing the detector in an offset position. When the phantom was filled with
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water, it was observed that the contrast between the long PVC tube and the water completely disappeared in the
center region of the volume. This did not occur in the shorter tubes, so it is clear that larger, more elongated
(high aspect ratio) structures will suffer more from contrast loss. The quantitative results shown in table 5 were
slightly more in favor of the aW-SIRT algorithm for the empty phantom, but the differences were less
pronounced when the phantom was filled. However, the shorter computation time of the aW-SIRT is a great
advantage.

The reconstructed slices of the rabbit using W-SART and aW-SIRT were free of redundancy-related
artifacts. However, by inspecting the grayscales of figure 12, it can be noticed that the grayscale in the middle
column has the smallest window. This implies that there is less overall contrast in that region as compared to the
slice of the head (much larger window). This loss of contrast is again due to the limited dynamic range of the
system (in combination with beam-hardening), as was also the cause for the loss of contrast in the long PVC
tube. The reported values of CNR and computation time, as well as the visual quality, are in favor of the aW-
SIRT method. Nearly identical results were obtained using 200 iterations of W-SIRT, but the computation time
would then nearly double and exceed the computation time of W-SART. It is therefore strongly advised to build
in a relaxation parameter when using a weighted SIRT approach.

Using the aW-SIRT (or W-SIRT) algorithm, we have shown that the effective FOV of the detector could be
increased by more than 75% (see results of PMMA and rabbit sample), which is a considerable gain. In theory,
the effective detector width could be increased even further, but since our system is highly modular and depends
on phantom-based calibration (Nguyen et al 2021), the extension of the FOV is experimentally limited. The
beads in the calibration phantom should be visible in each frame, so the size of the overlap region should be large
enough to contain the full phantom in every projection. Furthermore, such a flexible set-up with large
components placed on trolleys and ceiling gantries is modified by hand and can, therefore, only be aligned and
repositioned with limited accuracy.

The work presented in this paper can, for example, be of interest to researchers in the field of small animal
biomechanics using stereoscopic x-ray systems. These systems provide information on animal movement, but
morphological data of the specimen (such as bone segmentation) needs to be gathered in a separate CT-system,
which is rarely available in the same facility. In this work, not only do we prove that such systems can be extended
to tomographic systems by introducing a rotation stage, but the size of the reconstruction volume can be also
enlarged to measure the size of the animal to be imaged. This, for example, paves the way for longitudinal studies
of young animal development, because locomotion data, as well as morphological data, can be gathered in the
same set-up, circumventing the issue of animal transportation between facilities. The effective FOV (and thus
the diameter of the reconstruction volume) can be enlarged to a certain extent during the growth period of the
animal under consideration. However, we pointed out that continuous rotation of the sample and the limited
dynamic range might pose issues while imaging larger animals of high aspect ratio in such a system. This is of
course one of the fields that could benefit from this work, as the implementation of the W-SIRT and aW-SIRT
algorithms are not field-specific.

It leaves us to mention that the proposed W-SIRT and aW-SIRT methods are convenient to implement
using the ASTRA toolbox, given the fact that both methods are nearly purely matrix multiplications, except for
the creation of matrices A, R, C, and W. For large-scale datasets, the matrix A is too large to store explicitly, and
therefore, implementations based on explicit matrix computations (as in MATLAB) cannot be used for (for
example) the SIRT algorithm. However, an interface was developed in the ASTRA toolbox (Bleichrodt eral 2016)
that makes use of the Spot toolbox, which allows wrapping external, GPU-based codes for linear operations in
MATLAB objects that can be treated as matrices (van den Bergh and Friedlander 2013). This implies that the
linear operations of the forward and backward projection can be defined and treated as matrices in the MATLAB
interface, allowing for an intuitive implementation of the SIRT algorithm. Instructions on how to implement the
SIRT algorithm using the ASTRA opTomo operator can be found in the work of Bleichrodt et al and can be
extended to the W-SIRT or aW-SIRT algorithm by incorporating the redundancy weighting matrix W and
relaxation parameter .. The ASTRA toolbox is also available in Python, where similar syntax using
LinearOperator objects (equivalent to the Spot toolbox in MATLAB) allows an intuitive implementation of the
W-SIRT and aW-SIRT algorithms in matrix form as well.

5. Conclusion

In this work, we have presented the implementation of redundancy weighting in the well-known SIRT
algorithm for detector offset tomography. The proposed algorithms were validated in both simulations and
experiments, where it was shown that artifacts in the reconstructions related to placing the detector in a non-
centered position were successfully removed. To use the algorithm in a useful way, we have proven that the
inclusion of an additional relaxation parameter will accelerate the convergence. Using a relaxation parameter,
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higher CNR values could be obtained as compared to a weighted SART approach, ata much shorter
computation time. As opposed to pre-convolutional FDK, the aW-SIRT algorithm performs well for both small
and large detector shifts, resulting in a maximum increase of the width of theFOV of >75%. The aW-SIRT
algorithm has proven to be a valuable technique, which is applicable in reconstruction problems with flexible
and complex geometry. Although the results in this work are obtained using XRIIs, the method readily applies to
flat-panel detectors as well.
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