
Introduction to Social Network Analysis 

Davor Salihović 

One of the primary goals of the DiplomatiCon project is to examine the development, 
maintenance, and structures of the various formal and informal networks that existed across the 
medieval Mediterranean, as well as their interrelations. While it is well known that the 
“Christian” west and north and the “Islamicate” east and south maintained contact throughout 
the medieval period, the project seeks to investigate the processes through which these contacts 
emerged, how these processes were governed by spatial and structural characteristics of the 
networks and by the personal characeristics of individuals, and to what extent they were 
influenced by the varying intensity of contact across different networks. An investigation into 
these dynamics over time allows not only for a mapping of the local forces through which cross-
Mediterranean networks emerged, but also for a formal testing of our current understanding of 
these interactions and the introduction of a pioneering formal description of phenomena that 
have previously been understood only descriptively. 

As such, the project lies at the intersection of history and network science, employing tools 
from graph theory and network analysis to model and investigate these phenomena. Network 
analysis is based on modeling connections and interactions between entities, conceptualizing 
them as points (called “nodes”) and the lines that connect them (called “links” or, in 
mathematical terms, “vertices” and “edges”). While network science and graph theory both 
develop the metrics and tools needed to model, analyse, and understand graphs theoretically—
as mathematical entities and models—findings from these fields have been successfully applied 
to the analysis of empirical networks across a wide range of disciplines. Network analysis has 
now been applied to phenomena as diverse as animal behavior,1 scientific collaboration,2 
cultural culinary preferences,3 genetics and disease,4 protein interactions,5 to name a few, and—
perhaps most successfully—social interactions. 

Like any other mathematical model of social (or other) phenomena, graphs aim to introduce 
mathematical rigour and formal language into the analysis of data on (historical) social 
interactions. Networks—and the various metrics and tools developed for their analysis—enable 
us to formalise theories, assumptions, and data; quantify the structures and dynamics 
characteristic of networks of interest; apply statistical inference; test established theories and 
propose new ones; and describe findings in a precise, interdisciplinary language. As with other 
models, their purpose is to support the human mind—remarkably limited in its ability to 
intuitively grasp the intricacies of complex systems, having evolved to function in the “Middle 
World”6—in disentangling the underlying processes that govern correlations between diverse 
dynamics, be it in the emergence of consciousness or the success of a job hunt. Today’s 
computational power has further enhanced mathematical modeling, enabling rapid calculation 
and quantification, as well as accelerating the development of new formal methods. All this 
allows us to move beyond the limits of human intuition in conceptualizing and analysing 
complex phenomena such as (social) interactions and connections. 

The last point seems especially relevant to the study of history, where formalism is often lacking 
and “common sense” heuristics have long served as the cornerstone of methodology—both in 
general and in the study of social networks in particular. Although social network analysis has 
gained popularity among historians in recent years—and some studies do employ formalism 
and sophisticated methods—network analysis in historical scholarship is still often limited to 



visualisation, with little engagement in the deeper analytical or theoretical potential of the 
approach. While network visualisations can produce striking imagery—perhaps by catering to 
the strengths of human perception or conveying an illusion of analytical sophistication, or 
both—they often contribute little, and usually nothing, to our understanding of the structural 
forces and dynamic processes that give rise to networks, govern the formation and maintenance 
of links, or shape percolation, flow, and other network phenomena. The types of visualisations 
themselves should be chosen based on concrete criteria—criteria that are often overlooked. 
Visualising networks is a rigorous practice in its own right, governed by precise mathematical 
rules that determine how nodes and links are plotted. Arbitrarily selecting a visualisation 
method can mislead analysis more often than it offers meaningful insight.  

Figure 1 displays an array of networks—some simulated, some empirical; some generated 
through similar dynamics, some based on different underlaying forces. In most cases—
particularly as networks grow large, as seen in networks E or even B—the human eye and mind 
are incapable of discerning even the most basic structural characteristics, let alone calculating 
likelihood functions for parameters correlated with the probability of nodes sharing links. 
Without comprehensive training, one would struggle to identify which networks are computer-
generated and which are derived from empirical data—if such a distinction is possible at all. 
While network A, a random graph generated via the G(N, p) Erdős-Rényi model7 appears 
notably different from, for instance, graphs C or F, graphs B and C are also simulated, but 
although they appear rather different from each other, they were generated using the same 
dynamics of preferential attachment and growth in the Barabási-Albert model.8 There, 
acquiring links over time is related to one’s existing degree, governed by the preferential 
attachment parameter (approximated in the probability that a node with degree 𝑘 is chosen: 
𝛱(𝑘)~𝑘!). This model more closely approximates real-world networks than random graphs, 
most notably by producing a power-law degree distribution (𝑃(𝑘)~	𝑘"#, the probability of a 
node interacting with k other nodes decays as a power law, meaning that the probability is 
relatively high for low degrees and much lower for high degrees), a common feature in many 
empirical networks. This is why graph C, for instance, resembles the three graphs in the lower 
panels—all of which are based on empirical data. Graph D shows the network of accusations 
in a fourtheenth-century inquisitorial trial.9 Graph E depicts human protein-protein interactions 
(simplified for visualisation purposes),10 while graph F shows the spatial network of 
correspondence across the late-medieval Mediterraenan, drawing on DiplomatiCon data on the 
flow of correspondence between locations. Network F is also shown in Figure 2, but under a 
different layout. There, node placement is based on geographic coordinates; in Figure 1F, the 
positions are determined using the popular Fruchterman–Reingold layout algorithm, which 
treats nodes as repelling particles (like particles with the electric charge of the same sign) 
connected by spring-like links, leading to a structure based on network topology rather than 
geography. 
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Graphs are mathematical structures that happen to suit the modeling of social relations. As such, 
they are most succesffuly represented by a matrix—typically the adjacency matrix—which uses 



ones and zeros (or other values, in the case of weighted networks) to indicate which nodes are 
connected. By convention, the matrix is read from rows to columns; that is, in the case of a non-
symmetric matrix representing directed links, a one at position (i, j) indicates that row node i 
sends a link to column node j: 

𝐴 =

⎣
⎢
⎢
⎢
⎡
0 1 1 1 1
1 0 0 0 1
0 0 0 0 0
0 1 1 0 1
1 1 1 1 0⎦

⎥
⎥
⎥
⎤
    (1) 

It is for this reason that matrix operations and linear algebra are central to the analysis of social 
(or other types of) networks, as the metrics and statistics that describe various structural features 
of networks are derived from them. Note, for instance, that a matrix is simply composed of 
vectors—whether read row-wise or column-wise. These vectors are no different from the two-
element or three-element vectors we are used to working with, such as those representing a 
point in two-dimensional space—for example, vector 𝑣⃗ = [3, 5]—or in three-dimensional 
space, such as 𝑎⃗ = [3, 5, 1]. The only difference is that a vector from an adjacency matrix 
typically has more elements. It follows, then, that an n-element vector describes a point in an 
n-dimensional space, which we—with our “middle-world” brains—cannot intuitively visualise 
if n > 3. It also follows that a person’s profile, in terms of to whom they send their links—or 
from whom they receive links—is just a vector (or a point in a multidimensional space). It is 
little wonder, then, that one can formulate a measure of similarity between two such profiles—
or between two people—in terms of their outgoing or incoming ties, based on how their vectors 
relate to each other in this space. A well-known operation involving vectors is calculating the 
cosine of the angle (and therefore the angle itself) between two vectors. In the two-dimensional 
case, for two vectors 𝑎⃗ and 𝑏;⃗ , the equation looks as follows: 

cos 𝛼 =
𝑎$𝑏$ + 𝑎%𝑏%
|𝑎⃗| · C𝑏;⃗ C

=
𝑎$𝑏$ + 𝑎%𝑏%

D𝑎$% + 𝑎%% · D𝑏$% + 𝑏%%
 

This, as one might guess, generalises to n-dimensional vectors A and B as: 

cos 𝛼 =
∑ 𝐴&𝐵&'
&($

G∑ 𝐴&%'
&($ · G∑ 𝐵&%'

&($

 

The larger the cosine—and the smaller the angle between the vectors—the more similar the 
vectors are. In terms of social relations, the profiles of two people, based on whom they connect 
to (or who connects to them), are more similar when the cosine between their corresponding 
vectors is larger. 

In our directed network, displayed in matrix A (1)—which we can imagine as a network of 
correspondence—the cosine of the angles between the five column-vectors (representing 
incoming ties, or incoming correspondence) are as follows: 

⎢
⎢
⎢
⎢
⎡
1 0.41 0.41 0.50 0.41
0.41 1 1 0.82 0.67
0.41 1 1 0.82 0.67
0.50 0.82 0.82 1 0.41
0.41 0.67 0.67 0.41 1 ⎥

⎥
⎥
⎥
⎤
 



The higher the cosine in position (i, j)—ranging between 0 and 1—the greater the similarity in 
incoming ties between the two nodes; that is, the more similar the sets of people who send 
correspondence to them. This is why all diagonal entries equal 1—any node i has an identical 
profile to itself.  

Similar metrics—from the simplest to more sophisticated ones—are likewise based on linear 
algebra and matrix operations. One of the fundamental node-level metrics in network analysis 
is a node’s degree: the number of ties it is incident to, that is, the number of ties it sends (out-
degree) or receives (in-degree). This corresponds to the sum of the values in the node’s row (for 
out-degree) or column (for in-degree) vectors of the adjacency matrix, ∑ 𝐴&)'

)($  and ∑ 𝐴&)'
&($ . 

A measure of reciprocity—the proportion of ties in a directed network that are reciprocated by 
alters—is, for instance, operationalised as the sum of the element-wise product of the adjacency 
matrix and its transpose, divided by the total number of ties in the network. A measure of 
similarity between two nodes based on their shared neighbours—nodes they send ties to or 
receive ties from—that accounts for the popularity of those neighbors by penalising high-degree 
nodes—is the inverse log-weighted similarity. This measure assigns greater weight to less 
popular (lower-degree) common neighbors. It is defined as the sum of the inverse logarithms 
of the degrees of all common neighbors of nodes i and j: 𝑆&) = ∑ $

*+,(.!)' , where n are common 

neighbours and k their degree. 

Such measures—and much more—have been developed not only within linear algebra but also 
in the dedicated fields of network science and graph theory, particularly in their application to 
social networks. Some of the most prominent fora for the dissemination of the latest research 
in network theory, methodology, and empirical applications include Journal of Complex 
Networks, Social Networks, and Network Science. An aspiring student of networks is 
encouraged to consult the following titles for an extensive introduction to the field, in the order 
listed below: 

1. Borgatti, S. P., Everett, M. G., Johnson, J. C. (2018). Analyzing Social Networks. SAGE, 
and Borgatti, Everett, Johnson, Agneessens F. (2022). Analyzing Social Networks Using 
R. SAGE. 

2. Wasserman, S., Faust, K. (1994). Social Network Analysis. Methods and Applications. 
Cambridge University Press 

3. Barabási, A. (2017). Network Science. Cambridge University Press. 
4. Newman M. E. J. (2010). Networks. An Introduction. Oxford University Press. 
5. Kolaczyk, E. D., Csárdi, G. (2020). Statistical Analysis of Network Data with R. 

Springer. 
6. Cranmer S. J., Desmarais B. A., Morgan J. W. (2021). Inferental Network Analysis. 

Cambridge University Press. 

You may also wish to consult our introductory course on social network analysis and network 
statistics, available as an R script on GitHub: https://github.com/davorsalihovic/sna-and-
statistics-course. This hands-on, practical introduction covers fundamental concepts, metrics, 
and inferential methods in social network analysis. It is designed to support further learning and 
to complement the six titles listed above. 
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