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Overview

• Sources of Bias via examples

• Measuring and detecting bias in data and models
- Group fairness measures

• Demographic parity
• Equal odds
• Incompatibility

- Individual fairness

• Avoiding bias in models
- Cleaning data
- Fairness by design
- Post-processing



Recent examples
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https://towardsdatascience.com/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070



Racial bias found in health care risk 
algorithm 

• October 2019: used on more than 200 million people in US 
- predict which patients would likely need extra medical care
- identify which patients will benefit from “high-risk care 

management” programs: access to specially trained nursing
• Heavily favored white patients over black patients. 

- Race wasn’t a variable, but healthcare cost history. […] 
- Black patients incurred lower health-care costs than white 

patients with the same conditions on average.
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Amazon’s recruitment tool based 
on AI 

• In 2015, Amazon realized that their algorithm used for hiring 
employees was biased against women
- algorithm was based on the number of resumes submitted 

over the past ten years
- most of the applicants were men, it was trained to favor men 

over women.
• It penalized résumés that included the word “women’s”, as in 

“women’s chess club captain”. Downgraded graduates of two all-
women’s colleges.
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https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine



Word Embeddings Capture Gender 
Bias

• Word embedding
= representation of words/texts as a vector of numbers

• Banana  (0.3, 5.8, 7.3, 0.1)
• Father  (0.4, 0.7, 1.2, 0.4)
• Baby  (0.3, 0.6, 1.5, 3.0)
• …

• Why? Hundreds of algorithms work with numbers. Word2Vec is 
like an “adaptor”
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Embeddings are Not Random

• Words used in similar contexts should have similar vectors

• These embeddings are learned
- Optimization problem; words close in use should be close in 

distance
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Word2vec Captures Semantic 
Information
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𝑚𝑎𝑛 − 𝑤𝑜𝑚𝑎𝑛  ≈ 𝑘𝑖𝑛𝑔 − 𝑞𝑢𝑒𝑒𝑛𝑠𝑙𝑜𝑤𝑒𝑟 − 𝑠𝑙𝑜𝑤  ≈ 𝑠ℎ𝑜𝑟𝑡𝑒𝑟 − 𝑠ℎ𝑜𝑟𝑡



Amazing Applications: Sentiment 
Analysis

9

https://www.micc.unifi.it/projects/advanced-web-applications/sentiment-analysis-of-tweets-from-twitter/



BUT … Also Captures Cultural Biases

...

Imagine Word2Vec screening your CV,
finding the perfect job for you …
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BUT … Also Captures Cultural Biases
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COMPAS

• Correctional Offender Management 
Profiling for Alternative Sanctions 
(COMPAS) tool to predict risk of 
recidivism
- Label: was there a new arrest within two 

years?
- Data: pending charges, prior arrest 

history, previous pretrial failure, 
residential stability, substance abuse, …



ProPublica Study (2016)

• ProPublica study showed that the errors made by the model are 
highly biased:
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Recent examples
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Bias as an artifact of 
the way data was 
labelled 

Bias learned from 
biased data sources

Bias introduced by the 
algorithm



Overview

• Sources of Bias and examples

• Measuring and detecting bias in data and models
- Group fairness measures

• Demographic parity
• Equal odds
• Incompatibility

- Individual fairness

• Avoiding bias in models
- Cleaning data
- Fairness by design
- Post-processing



ProPublica Study (2016)

• ProPublica study showed that the errors made by the model are 
highly biased:

17



Fair or Unfair?

• Northpointe’s defense:
- scores are calibrated

• All false positives are in High risk
• All false negatives in other groups

• Black is relatively more frequent
in High than in Low and Medium
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Anthony W. Flores et al., False Positives, False Negatives, and False Analyses., 80 Fed. Probation 38 (2016) 



Pro Publica: Equal opportunity
• If you deserve to stay in prison, it shouldn’t matter whether 

you’re black or white

• If you deserve to be released, it shouldn’t matter whether you’re 
black or white
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Northpointe: Calibration
• What it means to be a high/low risk should not depend on your 

ethnicity



Illustration: Calibrated
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Illustration: But Not Equal
Opportunity
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When is a score fair?

• However: it can be proven that both together can only be 
realized under very exceptional conditions:

Perfect predictability or Equal base rates
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What does it mean to be fair?

• ProPublica study and Northpointe’s response raises intriguing 
question:
- How can we define when a decision procedure is fair?

• Conclusion: 
- No universal definition of fairness ; situation-dependent
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Individual Fairness Measures
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Discrimination Detection in Data

Group Fairness Individual Fairness

e.g., Equal odds Situation testing



Situation Testing

• Is an individual discriminated?
- Look at similar instances

Discriminated?

Work Experience
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Luong, B. T., Ruggieri, S., & Turini, F. (2011, August). k-NN as an implementation of situation testing for discrimination discovery and prevention. 
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 502-510).



Situation Testing

• Is an individual discriminated?
- Look at similar instances

Luong, B. T., Ruggieri, S., & Turini, F. (2011, August). k-NN as an implementation of situation testing for discrimination discovery and prevention. 
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 502-510).
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Positive decision ration among…

Nearest female neighbours: 25%
Nearest male neighbours:    75% 

 Discrimination!
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Methods for Removing Bias

• We can divide fair classification algorithms:
- Which measures do they target
- Where in the process they act ?

• Do they require the sensitive attribute for predicting?
- All algorithms do require it at training time
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Kamiran, F., Calders, T., & Pechenizkiy, M. (2013). Techniques for discrimination-free predictive models. 
In Discrimination and Privacy in the Information Society (pp. 223-239). Springer.



Clean up the Dataset: Massaging

Learn a

ranker

Relabel

Decision boundary

Job=No Job=Yes

Final Model

Input dataset

Learn a

Classifier



Example: Adversarial learning

• Learn intermediate representation that allows to predict target 
but disallows inferring the sensitive attribute
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Madras, Creager Pitassi, Zemel. Learning Adversarially Fair and Transferable Representations. ICML 2018



Post-Processing: Node Relabeling

• Decision trees divide up the decision space

• Labels are assigned according to the majority class
• In node relabeling we change this strategy



unobserved

Example: Reverse Engineering

• We assume the data is generated by the following model:

• C is the true label, L the label given in the data
• Use EM to find model that maximizes likelihood on the training 

data

Calders, T., & Verwer, S. (2010). Three naive Bayes approaches for discrimination-free classification. Data Mining 
and Knowledge Discovery, 21(2), 277-292.



Summary

• ML models are not fair “out of the box”
- Bias in, bias out!

• Fairness: How to build models that optimally avoid certain
types of bias?

• However, partially inherent to decision making!
- Unequal base rates between groups provably lead to 

differences in treatment
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