

INTRODUCTION

- Example: Computer-aided design (CAD)

- Easy prototyping
- Design space exploration and optimization

– But…complex simulations

- Many design requirements
- Large-scale

Difficult to design and characterize

Design variables

INTRODUCTION

simulation

Physics-based simulations

- Finite elements, fluid dynamics, etc.
- Time-consuming
 - Ford: "36-160 hours for 1 crash simulation"

ntity	,	= small
ality	=	high
t	=	high

INTRODUCTION

- **Example**: Large neural networks

- Very successful
- Visual object detection, speech recognition,...

- But... expensive to train
- Many choices
 - Number of neurons [
 - Number of layers
 - Learning rate

Hyperparameters

Number of layers

SEARCH FOR HYPERPARAMETERS

How do people currently search?

- Trial-and-error
- Grid search
- Random search
- Painful! Requires many training cycles
 - Exponential increase for grid search

GLOBAL OPTIMIZATION

- x : Variables of interest
- f(x): Objective function
- Behavior unknown
- Time-consuming

Bayesian optimization

- A probabilistic method for data-efficient global optimization
- Minimizes f(x) and the number of evaluations

interest nction nown ing

obal optimization tions

BAYESIAN OPTIMIZATION

BAYESIAN OPTIMIZATION

NORMAL DISTRIBUTION

- Gaussian (normal) distribution

 $y \sim \mathcal{N}(0, \sigma^2)$

Mean (often **0**)

Variance

0.0 -2

0.8

0.6

0.4

0.2

Multivariate Gaussian (normal) distribution

Mean (often **0**)

Kernel (or covariance) matrix

10

Gaussian distribution

 $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$

distribution over **vectors** fully specified by a mean & covariance

Gaussian Process

$$f \sim \mathcal{GP}$$

distribution over functions

 $P(0, k(x^{i}, x^{j}))$

fully specified by a mean function & **kernel function** (or covariance)

- Sample from $\mathcal{N}(y|0,K)$
- Let K = I (identity matrix)
 - Independent normal distributions

- Sample from $\mathcal{N}(y|\mathbf{0}, K)$
- Let $K_{i,j} = k(x^i, x^j)$ (squared exponential)

KERNEL FUNCTION

– Kernel: How similar are two points? — Example: The Squared Exponential (SE) kernel – Weighted distance

14

Prior (no data)

- Assumptions about f(x)

 $f \sim \mathcal{GP}(\mathbf{0}, k(\mathbf{x}^i, \mathbf{x}^j))$

Posterior (training of model)
 Updated belief based on the data set
 Uses Bayes theorem!

- Likelihood: training model - Hyperparameters θ

$$\mathcal{L}(\theta) = -\log \mathcal{N}(\boldsymbol{y}|\boldsymbol{0}, K_{\theta}) = \frac{1}{2}\log|2\pi K_{\theta}|$$
Capacity of Regularized Regula

1

– Needs to be optimized

- E.g., gradient descent
- Expensive (but not for small data)

GAUSSIAN PROCESS TIME COMPLEXI

– Mean: model prediction

$$\mu(\boldsymbol{x}_{1:m}) = k(\boldsymbol{x}_{1:m}, \boldsymbol{x}_{1:n})^T (K + \sigma_n^2 I)^{-1} f_{1:n}$$

Constant: γ
 $m \times n$
 $n \times 1$

– Variance: model uncertainty

$$\sigma^{2}(\boldsymbol{x}_{1:m}) = k(\boldsymbol{x}_{1:m}, \boldsymbol{x}_{1:m}) - k(\boldsymbol{x}_{1:m}, \boldsymbol{x}_{1:n})^{T}(K + \sigma_{n}^{2})$$

Constant

 $m \times m$

 $m \times n$

 $(I)^{-1}k(x_{1:m}, x_{1:n})$

 $n \times m$

Sample from $\mathcal{N}(\mu(\mathbf{x}), \sigma^2(\mathbf{x}))$

Samples from $\mathcal{N}(\mu(\mathbf{x}), \sigma^2(\mathbf{x}))$

Samples from $\mathcal{N}(\mu(\mathbf{x}), \sigma^2(\mathbf{x}))$

$$f(\mathbf{x}) \sim \mathcal{N}(\mu(\mathbf{x}), \sigma^2(\mathbf{x}))$$

Gaussian Processes know what they don't know

Where to evaluate next?

– to improve on current best (f_{min})

- **Definition**: Acquisition function $\alpha(x)$
 - Measures how interesting a location x is
 - Higher the better (more '*interesting*')
- **Balance**

- Seek places with high uncertainty
- **Example**: Expected improvement

- **Example**: Probability of improvement

$$\alpha(x) = \phi\left(\frac{f_{min} - \mu(x)}{\sigma(x)}\right)$$

- Already very useful, but …
- Does not specify the amount of improvement

- **Example**: Expected Improvement

Normal probability density function (PDF)

– **Example**: Lower confidence bound (LCB)

 $\alpha(\mathbf{x}) = \mu(\mathbf{x}) - \beta \sigma(\mathbf{x})$

- $-\beta$ user-defined parameter
- No uncertainty => minimizes prediction
- If uncertainty is high enough => exploration

- Discrete small dataset
- Goal:
 - Minimize _____

- Discrete small dataset
- Goal:
 - Minimize ____

- Approach:
 - Build GP model

- Discrete small dataset
- Goal:
 - Minimize
- Approach:
 - Build GP model
 - Calc. acquisition function
 - Add sample...

- Discrete small dataset
- Goal:
 - Minimize
- Approach:
 - Build GP model
 - Calc. acquisition function
 - Add sample...

- Discrete small dataset
- Goal:
 - Minimize
- Approach:
 - Build GP model
 - Calc. acquisition function
 - Continue...

- Discrete small dataset
- Goal:
 - Minimize
- Approach:
 - Build GP model
 - Calc. acquisition function
 - ... until convergence

BAYESIAN OPTIMIZATION

- **Example**: Power amplifier
- **Problem**: design of a power amplifier Simulated in Keysight ADS
- **Goal**: optimize gain for 4 design variables
- **Results**: a better design in less simulations
 - vs traditional methods (no feasible design found) (

Standard tool (ADS)

Our methods

BAYESIAN OPTIMIZATION IN A NUTSHELL

Strategy to transform

unsolvable $x^* = \operatorname{argmin} f(x)$ $x \in \mathcal{X}$

Into a series of problems

solvable $x_{i+1} = \operatorname{argmax} \alpha(x)$ $x \in \mathcal{X}$

ONCLUSION

- Bayesian optimization
 - A probabilistic, data-efficient optimization method
 - Used when the objective is time-consuming
- Applications
 - Hyperparameter tuning of neural networks
 - **Design optimization** in engineering
- Software
 - Trieste / GPFlowOpt (python)
 - https://github.com/secondmind-labs/trieste
 - https://github.com/GPflow/GPflowOpt
 - SUMO toolbox (Matlab)
 - http://sumo.intec.ugent.be/SUMO_toolbox

Ivo Couckuyt

Department of Information Technology SUMO research cluster - IDlab

- Е ivo.couckuyt@ugent.be
- Т +32 9 331 49 91

sumo.intec.ugent.be www.ugent.be

Universiteit Gent f @ugent У @ugent 0 **Ghent University** in

