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INTRODUCTION

̶ Example: Computer-aided design (CAD)

̶ Easy prototyping

̶ Design space exploration and optimization

̶ But…complex simulations

̶ Many design requirements 

̶ Large-scale

̶ …

̶ Difficult to design and characterize
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[Chinea] Design variables



▪ Physics-based simulations

▪ Finite elements, fluid dynamics, etc.

▪ Time-consuming

▪ Ford: ”36-160 hours for 1 crash simulation”

quantity

cost

quality

INTRODUCTION
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▪Quantity = small

▪Quality = high

▪Cost = highSmall data



INTRODUCTION

̶ Example: Large neural networks

̶ Very successful

̶ Visual object detection, speech 

recognition,…

̶ But… expensive to train

̶ Many choices

̶ Number of neurons

̶ Number of layers

̶ Learning rate

̶ …
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Number of layers

Hyperparameters



SEARCH FOR HYPERPARAMETERS

̶ How do people currently search?

̶ Trial-and-error

̶ Grid search

̶ Random search

̶ Painful! Requires many training cycles

̶ Exponential increase for grid search
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GLOBAL OPTIMIZATION

x   : Variables of interest

f(x): Objective function

̶ Behavior unknown

̶ Time-consuming
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𝒙∗ = argmin
𝒙∈𝒳

𝑓 𝒙

Bayesian optimization

- A probabilistic method for data-efficient global optimization

- Minimizes 𝑓(𝒙) and the number of evaluations



Probabilistic 
model

Initial samples

Function 
evaluation

BAYESIAN OPTIMIZATION
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𝑓 𝒙

New sample

Final Results



Probabilistic 
model

Initial samples

Function 
evaluation

BAYESIAN OPTIMIZATION
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𝑓 𝒙

New sample

Final Results

Gaussian processAcquisition function

Train a neural network 

model, run simulation, …



̶ Gaussian (normal) distribution

̶ Multivariate Gaussian (normal) distribution

𝑦~𝒩(0, 𝜎2)

NORMAL DISTRIBUTION
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VarianceMean (often 0)

𝒚~𝒩(𝟎, K)

Kernel (or covariance) matrixMean (often 0)



Gaussian distribution

◆ y~𝒩(𝟎, K)

distribution over vectors 

fully specified by a mean & 
covariance

Gaussian Process

𝑓~𝒢𝒫 𝟎, 𝑘 𝒙𝑖 , 𝒙𝑗

distribution over functions

fully specified by a mean function &

kernel function (or covariance)

GAUSSIAN PROCESS
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infinite vector y



GAUSSIAN PROCESS

̶ Sample from 𝒩 𝒚 𝟎,𝐾

̶ Let 𝐾 = 𝐼 (identity matrix)

̶ Independent normal distributions
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GAUSSIAN PROCESS

̶ Sample from 𝒩 𝒚 𝟎,𝐾

̶ Let 𝐾𝑖,𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) (squared exponential)
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Hyperparameters 𝜃

KERNEL FUNCTION

̶ Kernel: How similar are two points?

̶ Example: The Squared Exponential (SE) kernel

‒ Weighted distance

𝑘 𝒙𝑖 , 𝒙𝑗 = 𝜎𝑓
2exp(−

1

2𝑙2
𝒙𝑖 − 𝒙𝑗

2
)
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14

signal variance lengthscale



GAUSSIAN PROCESS

̶ Prior (no data)

̶ Assumptions about 𝑓(𝒙)

̶ Posterior (training of model)

̶ Updated belief based on the data set

̶ Uses Bayes theorem!
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f 𝐱 ~𝒩(𝜇 𝒙 , 𝜎2 𝒙 )

𝑓~𝒢𝒫(𝟎, 𝑘 𝒙𝑖 , 𝒙𝑗 )

Prediction

Uncertainty (confidence)



LIKELIHOOD

̶ Likelihood: training model

̶ Hyperparameters 𝜃

ℒ 𝜃 = − log𝒩 𝒚 𝟎,𝐾𝜃 =
1

2
log |2𝜋𝐾𝜃| +

1

2
𝒚𝑇𝑲𝜽

−𝟏𝒚

̶ Needs to be optimized

̶ E.g., gradient descent

̶ Expensive (but not for small data)
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Capacity control

Regularization

Data-fit term

Cubic



GAUSSIAN PROCESS TIME COMPLEXITY

̶ Mean: model prediction

̶ Variance: model uncertainty
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𝜇 𝒙1:𝑚 = 𝑘 𝒙1:𝑚, 𝒙1:𝑛
𝑇 𝐾 + 𝜎𝑛

2𝐼 −1𝑓1:𝑛

𝜎2 𝒙1:𝑚 = 𝑘 𝒙1:𝑚, 𝒙1:𝑚 − 𝑘 𝒙1:𝑚, 𝒙1:𝑛
𝑇 𝐾 + 𝜎𝑛

2𝐼 −1𝑘 𝒙1:𝑚, 𝒙1:𝑛

𝑚 × 𝑛

Constant: 𝛾

𝑛 × 1 Linear

Quadratic𝑛 × 𝑛𝑚 × 𝑛 𝑛 ×𝑚

Constant

𝑚 ×𝑚



GAUSSIAN PROCESS POSTERIOR

19

Sample from 𝒩(𝜇 𝒙 , 𝜎2 𝒙 )



GAUSSIAN PROCESS POSTERIOR
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Samples from 𝒩(𝜇 𝒙 , 𝜎2 𝒙 )



GAUSSIAN PROCESS POSTERIOR
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Samples from 𝒩(𝜇 𝒙 , 𝜎2 𝒙 )



GAUSSIAN PROCESS POSTERIOR

22

f(x)~𝒩(𝜇 𝒙 , 𝜎2 𝒙 )

How can we use this for finding the optimum of f(x)?

Where should we evaluate next in order to improve the most?

Gaussian Processes know what they don’t know



Where to evaluate next?

̶ to improve on current best (𝑓𝑚𝑖𝑛)

ACQUISITION FUNCTION
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Current best

High 

uncertainty



̶ Definition: Acquisition function 𝛼 𝒙

̶ Measures how interesting a location 𝒙 is

̶ Higher the better (more ‘interesting’)

̶ Balance

̶ Exploitation

‒ Seek places with low prediction mean

̶ Exploration

‒ Seek places with high uncertainty

̶ Example: Expected improvement

ACQUISITION FUNCTION
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Finding a more accurate neural network

Improving the accuracy of the Gaussian process



ACQUISITION FUNCTION
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Current best

𝑃 𝐼 = න
−∞

𝑓𝑚𝑖𝑛

𝜓 𝑦|𝜇 𝒙 , 𝜎2 𝒙 𝑑𝑦

Probability: How likely (PDF)



ACQUISITION FUNCTION

̶ Example: Probability of improvement

̶ Already very useful, but …

̶ Does not specify the amount of improvement
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𝛼 𝑥 = 𝜙
𝑓𝑚𝑖𝑛 − 𝜇 𝒙

𝜎 𝒙



ACQUISITION FUNCTION
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Current best

𝐸 𝐼 = න
−∞

𝑓𝑚𝑖𝑛

𝑓𝑚𝑖𝑛 − 𝑦 𝜓 𝑦|𝜇 𝒙 , 𝜎2 𝒙 𝑑𝑦

Expectation: Amount of improvement x how likely (PDF)



̶ Example: Expected Improvement

ACQUISITION FUNCTION
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𝛼 𝒙 = 𝑓𝑚𝑖𝑛 − 𝜇 𝒙 Φ
𝑓𝑚𝑖𝑛 − 𝜇 𝒙

𝜎 𝒙
+ 𝜎 𝒙 𝜓

𝑓𝑚𝑖𝑛 − 𝜇 𝒙

𝜎 𝒙

Exploration

B
e
n

d

Exploitation

Normal probability density 

function (PDF)

Normal cumulative density 

function (CDF)



ACQUISITION FUNCTION

̶ Example: Lower confidence bound (LCB)

̶ 𝛽 user-defined parameter

̶ No uncertainty => minimizes prediction

̶ If uncertainty is high enough => exploration
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𝛼 𝒙 = 𝜇 𝒙 − 𝛽𝜎(𝒙)



̶ Problem:

̶ Discrete small dataset

̶ Goal: 

̶ Minimize

BAYESIAN OPTIMIZATION EXAMPLE
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̶ Problem:

̶ Discrete small dataset

̶ Goal: 

̶ Minimize

̶ Approach:

̶ Build GP model

BAYESIAN OPTIMIZATION EXAMPLE
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̶ Problem:

̶ Discrete small dataset

̶ Goal: 

̶ Minimize

̶ Approach:

̶ Build GP model

̶ Calc. acquisition function

̶ Add sample…

BAYESIAN OPTIMIZATION EXAMPLE
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̶ Problem:

̶ Discrete small dataset

̶ Goal: 

̶ Minimize

̶ Approach:

̶ Build GP model

̶ Calc. acquisition function

̶ Add sample…

BAYESIAN OPTIMIZATION EXAMPLE
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̶ Problem:

̶ Discrete small dataset

̶ Goal: 

̶ Minimize

̶ Approach:

̶ Build GP model

̶ Calc. acquisition function

̶ Continue…

BAYESIAN OPTIMIZATION EXAMPLE
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̶ Problem:

̶ Discrete small dataset

̶ Goal: 

̶ Minimize

̶ Approach:

̶ Build GP model

̶ Calc. acquisition function

̶ … until convergence

BAYESIAN OPTIMIZATION EXAMPLE

38



BAYESIAN OPTIMIZATION 

̶ Example: Power amplifier

̶ Problem: design of a power amplifier

̶ Simulated in Keysight ADS

̶ Goal: optimize gain for 4 design variables

̶ Results: a better design in less simulations

̶ vs traditional methods (no feasible design found)
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Our methods

Standard tool (ADS)



̶ Strategy to transform 

̶ Into a series of problems 

BAYESIAN OPTIMIZATION IN A NUTSHELL
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solvable

unsolvable𝒙∗ = argmin
𝒙∈𝒳

𝑓 𝒙

𝒙𝑖+1 = argmax
𝒙∈𝒳

𝛼 𝒙



CONCLUSION

̶ Bayesian optimization

̶ A probabilistic, data-efficient optimization method

̶ Used when the objective is time-consuming

̶ Applications

̶ Hyperparameter tuning of neural networks

̶ Design optimization in engineering

̶ Software

̶ Trieste / GPFlowOpt (python)

‒ https://github.com/secondmind-labs/trieste

‒ https://github.com/GPflow/GPflowOpt

̶ SUMO toolbox (Matlab)

‒ http://sumo.intec.ugent.be/SUMO_toolbox
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https://github.com/secondmind-labs/trieste
https://github.com/GPflow/GPflowOpt
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